The Babraham Institute Publications database contains details of all publications resulting from our research groups and Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
Generation of the primary antibody repertoire requires V(D)J recombination of hundreds of gene segments in聽the immunoglobulin heavy chain (Igh) locus. The role of interleukin-7 receptor (IL-7R) signaling in Igh recombination has been difficult to partition from its role in B cell survival and proliferation. With a detailed description of the Igh repertoire in murine IL-7R伪 bone marrow B cells, we demonstrate that IL-7R signaling profoundly influences V gene selection during V-to-DJ recombination. We find skewing toward 3' V genes during de novo V-to-DJ recombination more severe than the fetal liver (FL) repertoire and uncover a role for IL-7R signaling in D-to-J recombination. Transcriptome and accessibility analyses suggest reduced expression of B lineage transcription factors (TFs) and targets and loss of D and V antisense transcription in IL-7R伪 B cells. Thus, in addition to its roles in survival and proliferation, IL-7R signaling shapes the Igh repertoire by activating underpinning mechanisms.
Atg8-family protein lipidation is the most commonly used marker for monitoring autophagy. During macroautophagy, Atg8-family proteins are specifically conjugated to phosphatidylethanolamine (PE) in forming, double-membrane autophagosomes. A distinct, non-canonical autophagy pathway also operates, characterized by the Conjugation of ATG8s to endolysosomal Single Membranes (CASM). In our new study, we show that CASM is associated with the alternative conjugation of Atg8-family proteins to phosphatidylserine (PS), and PE, in response to various cellular stimuli. We also discover differences in the regulation of conjugation to PE and PS by ATG4s, and altered dynamics between the two species. The identification of alternative Atg8-family protein PS lipidation opens up exciting new questions on the roles, regulation and biology of Atg8-family proteins during non-canonical autophagy.
T follicular helper (Tfh) cells cognately guide differentiation of antigen-primed B cells in secondary lymphoid tissues. 'Tfh-like' populations not expressing the canonical Tfh cell transcription factor BCL6 have also been described, which can aid particular aspects of B cell differentiation. Tfh and Tfh-like cells are essential for protective and pathological humoral immunity. These CD4 T cells that help B cells are polarized to produce diverse combinations of cytokines and chemokine receptors and can be grouped into distinct subsets that promote antibodies of different isotype, affinity, and duration, according to the nature of immune challenge. However, unified nomenclature to describe the distinct functional Tfh and Tfh-like cells does not exist. While explicitly acknowledging cellular plasticity, we propose categorizing these cell states into three groups based on phenotype and function, paired with their anatomical site of action.
Epidemiological and clinical reports indicate that SARS-CoV-2 virulence hinges upon the triggering of an aberrant host immune response, more so than on direct virus-induced cellular damage. To elucidate the immunopathology underlying COVID-19 severity, we perform cytokine and multiplex immune profiling in COVID-19 patients. We show that hypercytokinemia in COVID-19 differs from the interferon-gamma-driven cytokine storm in macrophage activation syndrome, and is more pronounced in critical versus mild-moderate COVID-19. Systems modelling of cytokine levels paired with deep-immune profiling shows that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected. Antigen presenting machinery expression is also reduced in critical disease. Furthermore, we report that neutrophils contribute to disease severity and local tissue damage by amplification of hypercytokinemia and the formation of neutrophil extracellular traps. Together our findings suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity.
The maturation of immature B cells and the survival of mature B cells is stringently controlled to maintain a diverse repertoire of antibody specificities while avoiding self-reactivity. At the molecular level this is regulated by signalling from membrane immunoglobulin and the BAFF-receptor which sustain a pro-survival programme of gene expression. Whether and how posttranscriptional mechanisms contribute to B cell maturation and survival remains poorly understood. Here we show that the polypyrimidine tract binding proteins (PTBP) PTBP1 and PTBP3 bind to a large and overlapping set of transcripts in B cells. Both PTBP1 and PTBP3 bind to introns and exons where they are predicted to regulate alternative splicing. Moreover, they also show high-density of binding to 3' untranslated regions suggesting they influence the transcriptome in diverse ways. We show that PTBP1 and PTBP3 are required in B cells beyond the immature cell stage to sustain transitional B cells and the B1, marginal zone and follicular B cell lineages. Therefore, PTBP1 and PTBP3 promote the maturation of quiescent B cells by regulating gene expression at the post-transcriptional level. This article is protected by copyright. All rights reserved.
Assisted reproductive technologies impact transcriptome and epigenome of embryos and can result in long-term phenotypic consequences. Whole-genome DNA methylation profiles from individual bovine blastocysts in vivo- and in vitro-derived (using three sources of protein: reproductive fluids, blood serum and bovine serum albumin) were generated. The impact of in vitro culture on DNA methylation was analyzed, and sex-specific methylation differences at blastocyst stage were uncovered. In vivo embryos showed the highest levels of methylation (29.5%), close to those produced in vitro with serum, whilst embryos produced in vitro with reproductive fluids or albumin showed less global methylation (25-25.4%). During repetitive element analysis, the serum group was the most affected. DNA methylation differences between in vivo and in vitro groups were more frequent in the first intron than in CpGi in promoters. Moreover, hierarchical cluster analysis showed that sex produced a stronger bias in the results than embryo origin. For each group, distance between male and female embryos varied, with in vivo blastocyst showing a lesser distance. Between the sexually dimorphic methylated tiles, which were biased to X-chromosome, critical factors for reproduction, developmental process, cell proliferation and DNA methylation machinery were included. These results support the idea that blastocysts show sexually-dimorphic DNA methylation patterns, and the known picture about the blastocyst methylome should be reconsidered.
Location of immune cells that form the germinal center reaction within secondary lymphoid tissues can be characterized using confocal microscopy. Here, we present an optimized immunofluorescence staining protocol to image germinal center structures in fixed/frozen spleen sections from ChAdOx1 nCoV-19 immunized mice. This protocol can be adapted to identify other cell types within secondary lymphoid tissues. For complete information on the generation and use of this protocol to examine immune responses to the COVID vaccine ChAdOx1 nCoV-19, please refer to Silva-Cayetano et聽al. (2020).
Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, data are scarce on vaccine efficacy against variants of concern (VOC) in individuals above 80 years of age. Here we analysed immune responses following vaccination with mRNA vaccine BNT162b2 in elderly participants and younger health care workers. Serum neutralisation and binding IgG/IgA after the first vaccine dose diminished with increasing age, with a marked drop in participants over 80 years old. Sera from participants above 80 showed significantly lower neutralisation potency against B.1.1.7, B.1.351 and P.1. variants of concern as compared to wild type and were more likely to lack any neutralisation against VOC following the first dose. However, following the second dose, neutralisation against VOC was detectable regardless of age. Frequency of SARS-CoV-2 Spike specific B-memory cells was higher in elderly responders versus non-responders after first dose. Elderly participants demonstrated clear reduction in somatic hypermutation of class switched cells. SARS-CoV-2 Spike specific T- cell IFN纬 and IL-2 responses decreased with increasing age, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high risk population that warrant specific measures to boost vaccine responses, particularly where variants of concern are circulating.
Reproductive biology methods rely on in vitro follicle cultures from mature follicles obtained by hormonal stimulation for generating metaphase II oocytes to be fertilised and developed into a healthy embryo. Such techniques are used routinely in both rodent and human species. DNA methylation is a dynamic process that plays a role in epigenetic regulation of gametogenesis and development. In mammalian oocytes, DNA methylation establishment regulates gene expression in the embryos. This regulation is particularly important for a class of genes, imprinted genes, whose expression patterns are crucial for the next generation. The aim of this work was to establish an in vitro culture system for immature mouse oocytes that will allow manipulation of specific factors for a deeper analysis of regulatory mechanisms for establishing transcription regulation-associated methylation patterns.
Normal function of the placenta depends on the earliest developmental stages when trophoblast cells differentiate and invade into the endometrium to establish the definitive maternal-fetal interface. Previously, we identified the ubiquitously expressed tumour suppressor BRCA1-associated protein 1 (BAP1) as a central factor of a novel molecular node controlling early mouse placentation. However, functional insights into how BAP1 regulates trophoblast biology are still missing. Using CRISPR/Cas9 knockout and overexpression technology in mouse trophoblast stem cells, here we demonstrate that the downregulation of BAP1 protein is essential to trigger epithelial-mesenchymal transition (EMT) during trophoblast differentiation associated with a gain of invasiveness. Moreover, we show that the function of BAP1 in suppressing EMT progression is dependent on the binding of BAP1 to additional sex comb-like (ASXL1/2) proteins to form the polycomb repressive deubiquitinase (PR-DUB) complex. Finally, both endogenous expression patterns and BAP1 overexpression experiments in human trophoblast stem cells suggest that the molecular function of BAP1 in regulating trophoblast differentiation and EMT progression is conserved in mice and humans. Our results reveal that the physiological modulation of BAP1 determines the invasive properties of the trophoblast, delineating a new role of the BAP1 PR-DUB complex in regulating early placentation.
The eukaryotic chaperonin TRiC/CCT is a large ATP-dependent complex essential for cellular protein folding. Its subunit arrangement into two stacked eight-membered hetero-oligomeric rings is conserved from yeast to man. A recent breakthrough enables production of functional human TRiC (hTRiC) from insect cells. Here, we apply a suite of mass spectrometry techniques to characterize recombinant hTRiC. We find all subunits CCT1-8 are N-terminally processed by combinations of methionine excision and acetylation observed in native human TRiC. Dissociation by organic solvents yields primarily monomeric subunits with a small population of CCT dimers. Notably, some dimers feature non-canonical inter-subunit contacts absent in the initial hTRiC. This indicates individual CCT monomers can promiscuously re-assemble into dimers, and lack the information to assume the specific interface pairings in the holocomplex. CCT5 is consistently the most stable subunit and engages in the greatest number of non-canonical dimer pairings. These findings confirm physiologically relevant post-translational processing and function of recombinant hTRiC and offer quantitative insight into the relative stabilities of TRiC subunits and interfaces, a key step toward reconstructing its assembly mechanism. Our results also highlight the importance of assigning contacts identified by native mass spectrometry after solution dissociation as canonical or non-canonical when investigating multimeric assemblies.
Although fingolimod and interferon-尾 are two mechanistically different multiple sclerosis (MS) treatments, they both induce B cell activating factor (BAFF) and shift the B cell pool towards a regulatory phenotype. However, whether there is a shared mechanism between both treatments in how they influence the B cell compartment remains elusive. In this study, we collected a cross-sectional study population of 112 MS patients (41 untreated, 42 interferon-尾, 29 fingolimod) and determined B cell subsets, cell-surface and RNA expression of BAFF-receptor (BAFF-R) and transmembrane activator and cyclophilin ligand interactor (TACI) as well as plasma and/or RNA levels of BAFF, BAFF splice forms and interleukin-10 (IL-10) and -35 (IL-35). We added an B cell culture with four stimulus conditions (Medium, CpG, BAFF and CpG+BAFF) for untreated and interferon-尾 treated patients including measurement of intracellular IL-10 levels. Our flow experiments showed that interferon-尾 and fingolimod induced BAFF protein and mRNA expression (P 鈮 3.15 x 10) without disproportional change in the antagonizing splice form. Protein BAFF correlated with an increase in transitional B cells (P = 5.70 x 10), decrease in switched B cells (P = 3.29 x 10), and reduction in B cell-surface BAFF-R expression (P = 2.70 x 10), both on TACI-positive and -negative cells. TACI and BAFF-R RNA levels remained unaltered. RNA, plasma and experiments demonstrated that BAFF was not associated with increased IL-10 and IL-35 levels. In conclusion, treatment-induced BAFF correlates with a shift towards transitional B cells which are enriched for cells with an immunoregulatory function. However, BAFF does not directly influence the expression of the immunoregulatory cytokines IL-10 and IL-35. Furthermore, the post-translational mechanism of BAFF-induced BAFF-R cell surface loss was TACI-independent. These observations put the failure of pharmaceutical anti-BAFF strategies in perspective and provide insights for targeted B cell therapies.
n/a
Circadian gene expression is essential for organisms to adjust their physiology and anticipate daily changes in the environment. The molecular mechanisms controlling circadian gene transcription are still under investigation. In particular, how chromatin conformation at different genomic scales and regulatory elements impact rhythmic gene expression has been poorly characterized.
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 genome editing system has been broadly adopted for high-throughput genetic screens. However, the application of genome-wide single guide RNA (sgRNA) libraries can be challenging. We generated a custom sgRNA library, an order of magnitude smaller than genome-wide alternatives, to facilitate the genetic screening of RNA binding proteins (RBPs). We demonstrated the utility of our reagent in a genetic screen for RBPs that conveyed cellular resistance or sensitivity to oxidative stress induced by paraquat. This identified that CSDE1 and STRAP, proteins that interact with each other, convey sensitivity to oxidative stress and that Pumilio homologues (PUM1 and PUM2) convey resistance. Targeting eIF4-E1 and -A1 protected cells from high-dose paraquat, whereas eIF4E2 targeted cells did less well. We also found that G3BP1 promoted sensitivity to a low dose of paraquat but protected cells at a higher dose. Our study highlights the use of genetic screens to identify roles of RBPs and identifies novel genes regulating sensitivity to oxidative stress.
Genomic imprinting is the monoallelic expression of a gene based on parent of origin and is a consequence of differential epigenetic marking between the male and female germlines. Canonically, genomic imprinting is mediated by allelic DNA methylation. However, recently it has been shown that maternal H3K27me3 can result in DNA methylation-independent imprinting, termed "noncanonical imprinting." In this review, we compare and contrast what is currently known about the underlying mechanisms, the role of endogenous retroviral elements, and the conservation of canonical and noncanonical genomic imprinting.
Time is inherent to biological processes. It determines the order of events and the speed at which they take place. However, we still need to refine approaches to measure the course of time in biological systems and understand what controls the pace of development. Here, we argue that the comparison of biological processes across species provides molecular insight into the timekeeping mechanisms in biology. We discuss recent findings and the open questions in the field and highlight the use of systems as tools to investigate cell-autonomous control as well as the coordination of temporal mechanisms within tissues. Further, we discuss the relevance of studying tempo for tissue transplantation, homeostasis and lifespan.
CRISPR-Cas9 genome editing is a promising technique for clinical applications, such as the correction of disease-associated alleles in somatic cells. The use of this approach has also been discussed in the context of heritable editing of the human germ line. However, studies assessing gene correction in early human embryos report low efficiency of mutation repair, high rates of mosaicism, and the possibility of unintended editing outcomes that may have pathologic consequences. We developed computational pipelines to assess single-cell genomics and transcriptomics datasets from OCT4 () CRISPR-Cas9-targeted and control human preimplantation embryos. This allowed us to evaluate on-target mutations that would be missed by more conventional genotyping techniques. We observed loss of heterozygosity in edited cells that spanned regions beyond the on-target locus, as well as segmental loss and gain of chromosome 6, on which the gene is located. Unintended genome editing outcomes were present in 鈭16% of the human embryo cells analyzed and spanned 4-20 kb. Our observations are consistent with recent findings indicating complexity at on-target sites following CRISPR-Cas9 genome editing. Our work underscores the importance of further basic research to assess the safety of genome editing techniques in human embryos, which will inform debates about the potential clinical use of this technology.
The International Society for Stem Cell 51在线 has updated its Guidelines for Stem Cell 51在线 and Clinical Translation in order to address advances in stem cell science and other relevant fields, together with the associated ethical, social, and policy issues that have arisen since the last update in 2016. While growing to encompass the evolving science, clinical applications of stem cells, and the increasingly complex implications of stem cell research for society, the basic principles underlying the Guidelines remain unchanged, and they will continue to serve as the standard for the field and as a resource for scientists, regulators, funders, physicians, and members of the public, including patients. A summary of the key updates and issues is presented here.
The ISSCR Guidelines for Stem Cell 51在线 and Clinical Translation were last revised in 2016. Since then, rapid progress has been made in research areas related to in聽vitro culture of human embryos, creation of stem cell-based embryo models, and in聽vitro gametogenesis. Therefore, a working group of international experts was convened to review the oversight process and provide an update to the guidelines. This report captures the discussion and summarizes the major recommendations made by this working group, with a specific emphasis on updating the categories of review and engagement with the specialized scientific and ethical oversight process.
Follicular helper T (T) cells control antibody responses by supporting antibody affinity maturation and memory formation. Inadequate T function has been found in individuals with ineffective responses to vaccines, but the mechanism underlying T regulation in vaccination is not understood. Here, we report that lower serum levels of the metabolic hormone leptin associate with reduced vaccine responses to influenza or hepatitis B virus vaccines in healthy populations. Leptin promotes mouse and human T differentiation and IL-21 production via STAT3 and mTOR pathways. Leptin receptor deficiency impairs T generation and antibody responses in immunisation and infection. Similarly, leptin deficiency induced by fasting reduces influenza vaccination-mediated protection for the subsequent infection challenge, which is mostly rescued by leptin replacement. Our results identify leptin as a regulator of T cell differentiation and function and indicate low levels of leptin as a risk factor for vaccine failure.
The enzyme-linked immunosorbent assay (ELISA) technique has been developed half a century ago, and yet its role in molecular biology remains significant. Among the most sensitive of immunoassays, it offers high throughput, combined with affordability and ease of use. This chapter provides the procedure of a highly reproducible indirect sandwich ELISA protocol, which can be applied to a variety of semi-quantitative assays for the investigation of the molecular biology of 5-hydroxymethylcytosine (5hmC) or TET enzymes. Three variations of this protocol are described: assessment and validation of 5hmC-binding proteins, screening and validation of anti-5hmC antibodies, or a readout of TET catalytic activity in in vitro experiments. The assay principle is based on the use of a high affinity avidin-biotin system for efficient immobilization of DNA fragments for further detection by high specificity antibodies. A colorimetric enzymatic reaction is ultimately developed with intensity correlating with the amount of attached antigen.
5-Hydroxymethylcytosine (5hmC) is an abundant DNA modification in human and mouse brain, as well as in embryonic stem cells, while severely depleted in multiple types of cancer. Assays for 5hmC detection and quantification, both on a locus-specific and global level, are limited in number and often resource-intensive. Immunodetection of 5hmC through antibodies remains a cost-effective and widely accessible approach. This chapter describes an ELISA-based protocol for 5hmC detection and quantification in genomic or in vitro modified DNA. It is based on the passive adsorption of DNA onto a solid polystyrene surface and the specific detection of 5hmC, which generates a measurable chemiluminescent signal, proportional to the amount of immobilized 5hmC. The assay utilizes a standard curve for interpolation of 5hmC percentage and a loading standard for monitoring loading precision.
Cryopreservation offers the potential to increase the availability of pancreatic islets for treatment of diabetic patients. However, current protocols, which use dimethyl sulfoxide (DMSO), lead to poor cryosurvival of islets. We demonstrate that equilibration of mouse islets with small molecules in aqueous solutions can be accelerated from >鈥24 to 6聽h by increasing incubation temperature to 37聽掳C. We utilize this finding to demonstrate that current viability staining protocols are inaccurate and to develop a novel cryopreservation method combining DMSO with trehalose pre-incubation to achieve improved cryosurvival. This protocol resulted in improved ATP/ADP ratios and peptide secretion from 尾-cells, preserved cAMP response, and a gene expression profile consistent with improved cryoprotection. Our findings have potential to increase the availability of islets for transplantation and to inform the design of cryopreservation protocols for other multicellular aggregates, including organoids and bioengineered tissues.