51在线

 

Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access
Rogers CH, Mielczarek O, Corcoran AE Immunology

A functional adaptive immune system must generate enormously diverse antigen receptor (AgR) repertoires from a limited number of AgR genes, using a common mechanism, V(D)J recombination. The AgR loci are among the largest in the genome, and individual genes must overcome huge spatial and temporal challenges to co-localize with optimum variability. Our understanding of the complex mechanisms involved has increased enormously, due in part to new technologies for high resolution mapping of AgR structure and dynamic movement, underpinning mechanisms, and resulting repertoires. This review will examine these advances using the paradigm of the mouse immunoglobulin heavy chain (Igh) locus. We will discuss the key regulatory elements implicated in Igh locus structure. Recent next generation repertoire sequencing methods have shown that local chromatin state at V genes contribute to recombination efficiency. Next on the multidimensional scale, we will describe imaging studies that provided the first picture of the large-scale dynamic looping and contraction the Igh locus undergoes during recombination. We will discuss chromosome conformation capture (3C)-based technologies that have provided higher resolution pictures of Igh locus structure, including the different models that have evolved. We will consider the key transcription factors (PAX5, YY1, E2A, Ikaros), and architectural factors, CTCF and cohesin, that regulate these processes. Lastly, we will discuss a plethora of recent exciting mechanistic findings. These include Rag recombinase scanning for convergent RSS sequences within DNA loops; identification of Igh loop extrusion, and its putative role in Rag scanning; the roles of CTCF, cohesin and cohesin loading factor, WAPL therein; a new phase separation model for Igh locus compartmentalization. We will draw these together and conclude with some horizon-scanning and unresolved questions.

+view abstract Frontiers in immunology, PMID: 33679727

Klionsky DJ, Ktistakis NT et al Signalling

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

+view abstract Autophagy, PMID: 33634751

Betrains A, Staels F, Moens L, Delafontaine S, Hershfield MS, Blockmans D, Liston A, Humblet-Baron S, Meyts I, Schrijvers R, Vanderschueren S Immunology

-

+view abstract Scandinavian journal of rheumatology, PMID: 33627040

Open Access
Van Damme H, Dombrecht B, Kiss M, Roose H, Allen E, Van Overmeire E, Kancheva D, Martens L, Murgaski A, Bardet PMR, Blancke G, Jans M, Bolli E, Martins MS, Elkrim Y, Dooley J, Boon L, Schwarze JK, Tacke F, Movahedi K, Vandamme N, Neyns B, Ocak S, Scheyltjens I, Vereecke L, Nana FA, Merchiers P, Laoui D, Van Ginderachter JA Immunology

Modulation and depletion strategies of regulatory T cells (Tregs) constitute valid approaches in antitumor immunotherapy but suffer from severe adverse effects due to their lack of selectivity for the tumor-infiltrating (ti-)Treg population, indicating the need for a ti-Treg specific biomarker.

+view abstract Journal for immunotherapy of cancer, PMID: 33589525

Open Access
Gaud C, C Sousa B, Nguyen A, Fedorova M, Ni Z, O Donnell VB, Wakelam MJO, Andrews S, Lopez-Clavijo AF Signalling,Bioinformatics

Lipidomics increasingly describes the quantitation using mass spectrometry of all lipids present in a biological sample. 聽As the power of lipidomics protocols increase, thousands of lipid molecular species from multiple categories can now be profiled in a single experiment. 聽Observed changes due to biological differences often encompass large numbers of structurally-related lipids, with these being regulated by enzymes from well-known metabolic pathways. 聽As lipidomics datasets increase in complexity, the interpretation of their results becomes more challenging. 聽BioPAN addresses this by enabling the researcher to visualise quantitative lipidomics data in the context of known biosynthetic pathways. 聽BioPAN provides a list of genes, which could be involved in the activation or suppression of enzymes catalysing lipid metabolism in mammalian tissues.

+view abstract F100051在线, PMID: 33564392

Open Access
Gaud C, C Sousa B, Nguyen A, Fedorova M, Ni Z, O'Donnell VB, Wakelam MJO, Andrews S, Lopez-Clavijo AF Signalling,Bioinformatics

Lipidomics increasingly describes the quantification using mass spectrometry of all lipids present in a biological sample. 聽As the power of lipidomics protocols increase, thousands of lipid molecular species from multiple categories can now be profiled in a single experiment. 聽Observed changes due to biological differences often encompass large numbers of structurally-related lipids, with these being regulated by enzymes from well-known metabolic pathways. 聽As lipidomics datasets increase in complexity, the interpretation of their results becomes more challenging. 聽BioPAN addresses this by enabling the researcher to visualise quantitative lipidomics data in the context of known biosynthetic pathways. 聽BioPAN provides a list of genes, which could be involved in the activation or suppression of enzymes catalysing lipid metabolism in mammalian tissues.

+view abstract F100051在线, PMID: 33564392

Open Access
Halsall JA, Andrews S, Krueger F, Rutledge CE, Ficz G, Reik W, Turner BM Epigenetics,Bioinformatics

Chromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10-50聽Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G and G. They comprise 1-5聽Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5聽Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in GM, possibly because of ongoing transcription. In conclusion,聽modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1聽Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.

+view abstract Scientific reports, PMID: 33542322

Open Access
G贸mez-Redondo I, Planells B, C谩novas S, Ivanova E, Kelsey G, Guti茅rrez-Ad谩n A Epigenetics

Prior work in mice has shown that some retrotransposed elements remain substantially methylated during DNA methylation reprogramming of germ cells. In the pig, however, information about this process is scarce. The present study was designed to examine the methylation profiles of porcine germ cells during the time course of epigenetic reprogramming.

+view abstract Clinical epigenetics, PMID: 33536045

Open Access
Yam-Puc JC, Zhang L, Maqueda-Alfaro RA, Garcia-Ibanez L, Zhang Y, Davies J, Senis YA, Snaith M, Toellner KM Immunology

It is still not clear how B cell receptor (BCR) signaling intensity affects plasma cell (PC) and germinal center (GC) B cell differentiation. We generated C纬1 Ptpn6 mice where SHP-1, a negative regulator of BCR signaling, is deleted rapidly after B cell activation. Although immunization with T-dependent antigens increased BCR signaling, it led to PC reduction and increased apoptosis. Dependent on the antigen, the early GC B cell response was equally reduced and apoptosis increased. At the same time, a higher proportion of GC B cells expressed cMYC, suggesting GC B cell-Tfh cell interactions may be increased. GC B cell numbers returned to normal at later stages, whereas affinity maturation was suppressed in the long term. This confirms that BCR signaling not only directs affinity-dependent B cell selection but also, without adequate further stimulation, can inflict cell death, which may be important for the maintenance of B cell tolerance.

+view abstract iScience, PMID: 33532715

Open Access
Silva-Cayetano A, Foster WS, Innocentin S, Belij-Rammerstorfer S, Spencer AJ, Burton OT, Fra-Bid贸 S, Le Lee J, Thakur N, Conceicao C, Wright D, Barrett J, Evans-Bailey N, Noble C, Bailey D, Liston A, Gilbert SC, Lambe T, Linterman MA Immunology

The spread of SARS-CoV-2 has caused a worldwide pandemic that has affected almost every aspect of human life. The development of an effective COVID-19 vaccine could limit the morbidity and mortality caused by infection and may enable the relaxation of social-distancing measures. Age is one of the most significant risk factors for poor health outcomes after SARS-CoV-2 infection; therefore, it is desirable that any new vaccine candidates elicit a robust immune response in older adults.

+view abstract Med, PMID: 33521747

Open Access
Channathodiyil P, Houseley J Epigenetics

A simple method for extraction of high quality RNA from cells that have been fixed, stained and sorted by flow cytometry would allow routine transcriptome analysis of highly purified cell populations and single cells. However, formaldehyde fixation impairs RNA extraction and inhibits RNA amplification. Here we show that good quality RNA can be readily extracted from stained and sorted mammalian cells if formaldehyde is replaced by glyoxal-a well-characterised fixative that is widely compatible with immunofluorescent staining methods. Although both formaldehyde and glyoxal efficiently form protein-protein crosslinks, glyoxal does not crosslink RNA to proteins nor form stable RNA adducts, ensuring that RNA remains accessible and amenable to enzymatic manipulation after glyoxal fixation. We find that RNA integrity is maintained through glyoxal fixation, permeabilisation with methanol or saponin, indirect immunofluorescent staining and flow sorting. RNA can then be extracted by standard methods and processed into RNA-seq libraries using commercial kits; mRNA abundances measured by poly(A)+ RNA-seq correlate well between freshly harvested cells and fixed, stained and sorted cells. We validate the applicability of this approach to flow cytometry by staining MCF-7 cells for the intracellular G2/M-specific antigen cyclin B1 (CCNB1), and show strong enrichment for G2/M-phase cells based on transcriptomic data. Switching to glyoxal fixation with RNA-compatible staining methods requires only minor adjustments of most existing staining and sorting protocols, and should facilitate routine transcriptomic analysis of sorted cells.

+view abstract PloS one, PMID: 33481798

Chicanne G, Bertrand-Michel J, Viaud J, Hnia K, Clark J, Payrastre B Biological Chemistry

Our knowledge of the role and biology of the different phosphoinositides has greatly expanded over recent years. Reversible phosphorylation by specific kinases and phosphatases of positions 3, 4, and 5 on the inositol ring is a highly dynamic process playing a critical role in the regulation of the spatiotemporal recruitment and binding of effector proteins. The specific phosphoinositide kinases and phosphatases are key players in the control of many cellular functions, including proliferation, survival, intracellular trafficking, or cytoskeleton reorganization. Several of these enzymes are mutated in human diseases. The impact of the fatty acid composition of phosphoinositides in their function is much less understood. There is an important molecular diversity in the fatty acid side chains of PI. While stearic and arachidonic fatty acids are the major acyl species in PIP, PIP, and PIP, other fatty acid combinations are also found. The role of these different molecular species is still unknown, but it is important to quantify these different molecules and their potential changes during cell stimulation to better characterize this emerging field. Here, we describe a sensitive high-performance liquid chromatography-mass spectrometry method that we used for the first time to profile the changes in phosphoinositide molecular species (summed fatty acyl chain profiles) in human and mouse platelets under resting conditions and following stimulation. This method can be applied to other hematopoietic primary cells isolated from human or experimental animal models.

+view abstract Methods in molecular biology, PMID: 33481230

Gould SA, White M, Wilbrey AL, P贸r E, Coleman MP, Adalbert R

Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side effect of cancer treatment, often associated with degeneration of sensory axons or their terminal regions. Presence of the slow Wallerian degeneration protein (WLD), or genetic deletion of sterile alpha and TIR motif containing protein 1 (SARM1), which strongly protect axons from degeneration after injury or axonal transport block, alleviate pain in several CIPN models. However, oxaliplatin can cause an acute pain response, suggesting a different mechanism of pain generation. Here, we tested whether the presence of WLD or absence of SARM1 protects against acute oxaliplatin-induced pain in mice after a single oxaliplatin injection. In BL/6 and Wld mice, oxaliplatin induced significant mechanical and cold hypersensitivities which were absent in Sarm1 mice. Despite the presence of hypersensitivity there was no significant loss of intraepidermal nerve fibers (IENFs) in the footpads of any mice after oxaliplatin treatment, suggesting that early stages of pain hypersensitivity could be independent of axon degeneration. To identify other changes that could underlie the pain response, RNA sequencing was carried out in DRGs from treated and control mice of each genotype. Sarm1 mice had fewer gene expression changes than either BL/6 or Wld mice. This is consistent with the pain measurements in demonstrating that Sarm1DRGs remain relatively unchanged after oxaliplatin treatment, unlike those in BL/6 and Wld mice. Changes in levels of four transcripts - Alas2, Hba-a1, Hba-a2, and Tfrc - correlated with oxaliplatin-induced pain, or absence thereof, across the three genotypes. Our findings suggest that targeting SARM1 could be a viable therapeutic approach to prevent oxaliplatin-induced acute neuropathic pain.

+view abstract Experimental neurology, PMID: 33460644

Tinarelli F, Ivanova E, Colombi I, Barini E, Balzani E, Garcia CG, Gasparini L, Chiappalone M, Kelsey G, Tucci V Epigenetics

DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period.

+view abstract Epigenetics & chromatin, PMID: 33407878

Open Access
Pickering KA, Gilroy K, Cassidy JW, Fey SK, Najumudeen AK, Zeiger LB, Vincent DF, Gay DM, Johansson J, Fordham RP, Miller B, Clark W, Hedley A, Unal EB, Kiel C, McGhee E, Machesky LM, Nixon C, Johnsson AE, Bain M, Strathdee D, van Hoof SR, Medema JP, Anderson KI, Brachmann SM, Stucke VM, Malliri A, Drysdale M, Turner M, Serrano L, Myant K, Campbell AD, Sansom OJ Immunology

RAC1 activity is critical for intestinal homeostasis, and is required for hyperproliferation driven by loss of the tumour suppressor gene Apc in the murine intestine. To avoid the impact of direct targeting upon homeostasis, we reasoned that indirect targeting of RAC1 via RAC-GEFs might be effective. Transcriptional profiling of Apc deficient intestinal tissue identified Vav3 and Tiam1 as key targets. Deletion of these indicated that while TIAM1 deficiency could suppress Apc-driven hyperproliferation, it had no impact upon tumourigenesis, while VAV3 deficiency had no effect. Intriguingly, deletion of either gene resulted in upregulation of Vav2, with subsequent targeting of all three (Vav2 Vav3 Tiam1), profoundly suppressing hyperproliferation, tumourigenesis and RAC1 activity, without impacting normal homeostasis. Critically, the observed RAC-GEF dependency was negated by oncogenic KRAS mutation. Together, these data demonstrate that while targeting RAC-GEF molecules may have therapeutic impact at early stages, this benefit may be lost in late stage disease.

+view abstract Nature communications, PMID: 33397922

Open Access
Webb LMC, Fra-Bido S, Innocentin S, Matheson LS, Attaf N, Bignon A, Novarino J, Fazilleau N, Linterman MA Immunology

Ageing profoundly changes our immune system and is thought to be a driving factor in the morbidity and mortality associated with infectious disease in older people. We have previously shown that the impaired immunity to vaccination that occurs in aged individuals is partly attributed to the effect of age on T follicular helper (Tfh) cell formation. In this study, we examined how age intrinsically affects Tfh cell formation in both mice and humans. We show increased formation of Tfh precursors (pre-Tfh) but no associated increase in germinal centre (GC)-Tfh cells in aged mice, suggesting age-driven promotion of only early Tfh cell differentiation. Mechanistically, we show that ageing alters TCR signalling which drives expression of the Notch-associated transcription factor, RBPJ. Genetic or chemical modulation of RBPJ or Notch rescues this age-associated early Tfh cell differentiation, and increased intrinsic Notch activity recapitulates this phenomenon in younger mice. Our data offer mechanistic insight into the age-induced changes in T-cell activation that affects the differentiation and ultimately the function of effector T cells.

+view abstract Aging cell, PMID: 33387451

Alcal谩-Vida R, Garcia-Forn M, Castany-Pladevall C, Creus-Muncunill J, Ito Y, Blanco E, Golbano A, Cresp铆-V谩zquez K, Parry A, Slater G, Samarajiwa S, Peir贸 S, Di Croce L, Narita M, P茅rez-Navarro E Epigenetics

Lamins are crucial proteins for nuclear functionality. Here, we provide new evidence showing that increased lamin B1 levels contribute to the pathophysiology of Huntington's disease (HD), a CAG repeat-associated neurodegenerative disorder. Through fluorescence-activated nuclear suspension imaging, we show that nucleus from striatal medium-sized spiny and CA1 hippocampal neurons display increased lamin B1 levels, in correlation with altered nuclear morphology and nucleocytoplasmic transport disruption. Moreover, ChIP-sequencing analysis shows an alteration of lamin-associated chromatin domains in hippocampal nuclei, accompanied by changes in chromatin accessibility and transcriptional dysregulation. Supporting lamin B1 alterations as a causal role in mutant huntingtin-mediated neurodegeneration, pharmacological normalization of lamin B1 levels in the hippocampus of the R6/1 mouse model of HD by betulinic acid administration restored nuclear homeostasis and prevented motor and cognitive dysfunction. Collectively, our work points increased lamin B1 levels as a new pathogenic mechanism in HD and provides a novel target for its intervention.

+view abstract EMBO molecular medicine, PMID: 33369245

Cook FA, Cook SJ Signalling

The RAS-regulated RAF-MEK1/2-ERK1/2 pathway promotes cell proliferation and survival and RAS and BRAF proteins are commonly mutated in cancer. This has fuelled the development of small molecule kinase inhibitors including ATP-competitive RAF inhibitors. Type I and type I陆 ATP-competitive RAF inhibitors are effective in BRAFV600E/K-mutant cancer cells. However, in RAS-mutant cells these compounds instead promote RAS-dependent dimerisation and paradoxical activation of wild-type RAF proteins. RAF dimerisation is mediated by two key regions within each RAF protein; the RKTR motif of the 伪C-helix and the NtA-region of the dimer partner. Dimer formation requires the adoption of a closed, active kinase conformation which can be induced by RAS-dependent activation of RAF or by the binding of type I and I陆 RAF inhibitors. Binding of type I or I陆 RAF inhibitors to one dimer partner reduces the binding affinity of the other, thereby leaving a single dimer partner uninhibited and able to activate MEK. To overcome this paradox two classes of drug are currently under development; type II pan-RAF inhibitors that induce RAF dimer formation but bind both dimer partners thus allowing effective inhibition of both wild-type RAF dimer partners and monomeric active class I mutant RAF, and the recently developed "paradox breakers" which interrupt BRAF dimerisation through disruption of the 伪C-helix. Here we review the regulation of RAF proteins, including RAF dimers, and the progress towards effective targeting of the wild-type RAF proteins.

+view abstract Biochemical Society transactions, PMID: 33367512

Open Access
Lehmann LC, Bacic L, Hewitt G, Brackmann K, Sabantsev A, Gaullier G, Pytharopoulou S, Degliesposti G, Okkenhaug H, Tan S, Costa A, Skehel JM, Boulton SJ, Deindl S Imaging

Upon DNA damage, the ALC1/CHD1L nucleosome remodeling enzyme (remodeler) is activated by binding to poly(ADP-ribose). How activated ALC1 recognizes the nucleosome, as well as how this recognition is coupled to remodeling, is unknown. Here, we show that remodeling by ALC1 requires a wild-type acidic patch on the entry side of the nucleosome. The cryo-electron microscopy structure of a nucleosome-ALC1 linker complex reveals a regulatory linker segment that binds to the acidic patch. Mutations within this interface alter the dynamics of ALC1 recruitment to DNA damage and impede the ATPase and remodeling activities of ALC1. Full activation requires acidic patch-linker segment interactions that tether the remodeler to the nucleosome and couple ATP hydrolysis to nucleosome mobilization. Upon DNA damage, such a requirement may be used to modulate ALC1 activity via changes in the nucleosome acidic patches.

+view abstract Cell reports, PMID: 33357431

Eckersley-Maslin MA Epigenetics

The concept of cellular plasticity is particularly apt in early embryonic development, where there is a tug-of-war between the stability and flexibility of cell identity. This balance is controlled in part through epigenetic mechanisms. Epigenetic plasticity dictates how malleable cells are to change by adjusting the potential to initiate new transcriptional programmes. The higher the plasticity of a cell, the more readily it can adapt and change its identity in response to external stimuli such as differentiation cues. Epigenetic plasticity is regulated in part through the action of epigenetic priming factors which establish this permissive epigenetic landscape at genomic regulatory elements to enable future transcriptional changes. Recent studies on the DNA binding proteins Developmental Pluripotency Associated 2 and 4 (Dppa2/4) support their roles as epigenetic priming factors in facilitating cell fate transitions. Here, using Dppa2/4 as a case study, the concept of epigenetic plasticity and molecular mechanism of epigenetic priming factors will be explored. Understanding how epigenetic priming factors function is key not only to improve our understanding of the tight control of development, but also to give insights into how this goes awry in diseases of cell identity, such as cancer.

+view abstract Biochemical Society transactions, PMID: 33336687

Dong X, Yang Y, Zou Z, Zhao Y, Ci B, Zhong L, Bhave M, Wang L, Kuo YC, Zang X, Zhong R, Aguilera ER, Richardson RB, Simonetti B, Schoggins JW, Pfeiffer JK, Yu L, Zhang X, Xie Y, Schmid SL, Xiao G, Gleeson PA, Ktistakis NT, Cullen PJ, Xavier RJ, Levine B Signalling

Autophagy, a process of degradation that occurs via the lysosomal pathway, has an essential role in multiple aspects of immunity, including immune system development, regulation of innate and adaptive immune and inflammatory responses, selective degradation of intracellular microorganisms, and host protection against infectious diseases. Autophagy is known to be induced by stimuli such as nutrient deprivation and suppression of mTOR, but little is known about how autophagosomal biogenesis is initiated in mammalian cells in response to viral infection. Here, using genome-wide short interfering RNA screens, we find that the endosomal protein sorting nexin 5 (SNX5) is essential for virus-induced, but not for basal, stress- or endosome-induced, autophagy. We show that SNX5 deletion increases cellular susceptibility to viral infection in vitro, and that Snx5 knockout in mice enhances lethality after infection with several human viruses. Mechanistically, SNX5 interacts with beclin 1 and ATG14-containing class III phosphatidylinositol-3-kinase (PI3KC3) complex 1 (PI3KC3-C1), increases the lipid kinase activity of purified PI3KC3-C1, and is required for endosomal generation of phosphatidylinositol-3-phosphate (PtdIns(3)P) and recruitment of the PtdIns(3)P-binding protein WIPI2 to virion-containing endosomes. These findings identify a context- and organelle-specific mechanism-SNX5-dependent PI3KC3-C1 activation at endosomes-for initiation of autophagy during viral infection.

+view abstract Nature, PMID: 33328639

Open Access
Saveliev A, Bell SE, Turner M Signalling

Cell migration relies on coordinated activity of chemotactic and guidance receptors. Here, we report a specific role for the RNA-binding protein ZFP36L1 in limiting the abundance of molecules involved in the homing of antibody-secreting cells (ASCs) to the bone marrow (BM). In the absence of ZFP36L1, ASCs build up in the spleen and the liver and show diminished accumulation in the BM. ZFP36L1 facilitates migration by directly regulating G protein-coupled receptor kinase 2 (GRK2) and the integrin chains 伪4 and 尾1 in splenic ASCs. Expression of CXCR4 and of the integrins 伪4 and 尾1 is differentially regulated on ASCs produced at the early and late stages of the immune response. Consequently, deletion of the Zfp36l1 gene has a stronger effect on BM accumulation of high-affinity ASCs formed late in the response. Thus, ZFP36L1 is an integral part of the regulatory network controlling gene expression during ASC homing.

+view abstract The Journal of experimental medicine, PMID: 33306108

Yu X, Willmann MR, Vandivier LE, Trefely S, Kramer MC, Shapiro J, Guo R, Lyons E, Snyder NW, Gregory BD Epigenetics

Although eukaryotic messenger RNAs (mRNAs) normally possess a 5' end N-methyl guanosine (mG) cap, a non-canonical 5' nicotinamide adenine dinucleotide (NAD) cap can tag certain transcripts for degradation mediated by the NAD decapping enzyme DXO1. Despite this importance, whether NAD capping dynamically responds to specific stimuli to regulate eukaryotic transcriptomes remains unknown. Here, we reveal a link between NAD capping and tissue- and hormone response-specific mRNA stability. In the absence of DXO1 function, transcripts displaying a high proportion of NAD capping are instead processed into RNA-dependent RNA polymerase 6-dependent small RNAs, resulting in their continued turnover likely to free the NAD molecules. Additionally, the NAD-capped transcriptome is significantly remodeled in response to the essential plant hormone abscisic acid in a mechanism that is primarily independent of DXO1. Overall, our findings reveal a previously uncharacterized and essential role of NAD capping in dynamically regulating transcript stability during specific physiological responses.

+view abstract Developmental cell, PMID: 33290723

Odle RI, Florey O, Ktistakis NT, Cook SJ Signalling

Autophagy and cap-dependent mRNA translation are tightly regulated by the mechanistic target of rapamycin complex 1 (mTORC1) signalling complex in response to nutrient availability. However, the regulation of these processes, and mTORC1 itself, is different during mitosis, and this has remained an area of significant controversy; for example, studies have argued that autophagy is either repressed or highly active during mitosis. Recent studies have shown that autophagy initiation is repressed, and cap-dependent mRNA translation is maintained during mitosis despite mTORC1 activity being repressed. This is achieved in large part by a switch from mTORC1- to cyclin-dependent kinase 1 (CDK1)-mediated regulation. Here, we review the history and recent advances and seek to present a unifying model to inform the future study of autophagy and mTORC1 during mitosis.

+view abstract Trends in cell biology, PMID: 33272830