51在线

 

Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Malengier-Devlies B, Bernaerts E, Ahmadzadeh K, Filtjens J, Vandenhaute J, Boeckx B, Burton O, De Visscher A, Mitera T, Berghmans N, Verbeke G, Liston A, Lambrechts D, Proost P, Wouters C, Matthys P Immunology

Systemic juvenile idiopathic arthritis (sJIA) is a systemic inflammatory disease of childhood-onset. sJIA is associated with neutrophilia, including immature granulocytes, potentially driven by the growth factor granulocyte-colony stimulating factor (G-CSF). This study aimed to unravel the role of G-CSF in the pathology of sJIA.

+view abstract Arthritis & Rheumatology, PMID: 35243819

Cabral-Dias R, Lucarelli S, Zak K, Rahmani S, Judge G, Abousawan J, DiGiovanni LF, Vural D, Anderson KE, Sugiyama MG, Genc G, Hong W, Botelho RJ, Fairn GD, Kim PK, Antonescu CN Signalling

The epidermal growth factor (EGF) receptor (EGFR) controls many aspects of cell physiology. EGF binding to EGFR elicits the membrane recruitment and activation of phosphatidylinositol-3-kinase, leading to Akt phosphorylation and activation. Concomitantly, EGFR is recruited to clathrin-coated pits (CCPs), eventually leading to receptor endocytosis. Previous work uncovered that clathrin, but not receptor endocytosis, is required for EGF-stimulated Akt activation, and that some EGFR signals are enriched in CCPs. Here, we examine how CCPs control EGFR signaling. The signaling adaptor TOM1L1 and the Src-family kinase Fyn are enriched within a subset of CCPs with unique lifetimes and protein composition. Perturbation of TOM1L1 or Fyn impairs EGF-stimulated phosphorylation of Akt2 but not Akt1. EGF stimulation also triggered the TOM1L1- and Fyn-dependent recruitment of the phosphoinositide 5-phosphatase SHIP2 to CCPs. Thus, the recruitment of TOM1L1 and Fyn to a subset of CCPs underlies a role for these structures in the support of EGFR signaling leading to Akt activation.

+view abstract The Journal of cell biology, PMID: 35238864

Chondronasiou D, Gill D, Mosteiro L, Urdinguio RG, Berenguer-Llergo A, Aguilera M, Durand S, Aprahamian F, Nirmalathasan N, Abad M, Martin-Herranz DE, Stephan-Otto Attolini C, Prats N, Kroemer G, Fraga MF, Reik W, Serrano M Epigenetics

The expression of the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) can convert somatic differentiated cells into pluripotent stem cells in a process known as reprogramming. Notably, partial and reversible reprogramming does not change cell identity but can reverse markers of aging in cells, improve the capacity of aged mice to repair tissue injuries, and extend longevity in progeroid mice. However, little is known about the mechanisms involved. Here, we have studied changes in the DNA methylome, transcriptome, and metabolome in naturally aged mice subject to a single period of transient OSKM expression. We found that this is sufficient to reverse DNA methylation changes that occur upon aging in the pancreas, liver, spleen, and blood. Similarly, we observed reversion of transcriptional changes, especially regarding biological processes known to change during aging. Finally, some serum metabolites and biomarkers altered with aging were also restored to young levels upon transient reprogramming. These observations indicate that a single period of OSKM expression can drive epigenetic, transcriptomic, and metabolomic changes toward a younger configuration in multiple tissues and in the serum.

+view abstract Aging cell, PMID: 35235716

O'Donnell VB Signalling

The Lands Pathway is a fundamental biochemical process named for its discovery by William EM Lands and revealed in a series of seminal papers published in the Journal of Biological Chemistry between 1958-65. It describes the selective placement in phospholipids of acyl chains, by phospholipid acyltransferases. This pathway has formed a core component of our knowledge of phospholipid and also diglyceride metabolism in mammalian tissues for over 60 years now. Our understanding of how the Lands pathways are enzymatically mediated via large families of related gene products that display both substrate and tissue specificity has grown exponentially since. Recent studies building on this are starting to reveal key roles for the Lands pathway in specific scenarios, in particular inflammation, immunity and inflammation. This review will cover the Lands cycle from historical perspectives first, then present new information on how this important cycle forms a central regulatory node connecting fatty acyl and phospholipid metabolism and how its altered regulation may present new opportunities for therapeutic intervention in human disease.

+view abstract Biochemical Society transactions, PMID: 35225335

Taubenschmid-Stowers J, Rostovskaya M, Santos F, Ljung S, Argelaguet R, Krueger F, Nichols J, Reik W Epigenetics,Bioinformatics

The activation of the embryonic genome marks the first major wave of transcription in the developing organism. Zygotic genome activation (ZGA) in mouse 2-cell embryos and 8-cell embryos in humans is crucial for development. Here, we report the discovery of human 8-cell-like cells (8CLCs) among naive embryonic stem cells, which transcriptionally resemble the 8-cell human embryo. They express ZGA markers, including ZSCAN4 and LEUTX, and transposable elements, such as HERVL and MLT2A1. 8CLCs show reduced SOX2 levels and can be identified using TPRX1 and H3.Y marker proteins in聽vitro. Overexpression of the transcription factor DUX4 and spliceosome inhibition increase human ZGA-like transcription. Excitingly, the 8CLC markers TPRX1 and H3.Y are also expressed in ZGA-stage 8-cell human embryos and may thus be relevant in聽vivo. 8CLCs provide a unique opportunity to characterize human ZGA-like transcription and might provide critical insights into early events in embryogenesis in humans.

+view abstract Cell stem cell, PMID: 35216671

Open Access
Robinson EL, Drawnel FM, Mehdi S, Archer CR, Liu W, Okkenhaug H, Alkass K, Aronsen JM, Nagaraju CK, Sjaastad I, Sipido KR, Bergmann O, Arthur JSC, Wang X, Roderick HL Signalling,Imaging

Heart failure is a leading cause of death that develops subsequent to deleterious hypertrophic cardiac remodelling. MAPK pathways play a key role in coordinating the induction of gene expression during hypertrophy. Induction of the immediate early gene (IEG) response including activator protein 1 (AP-1) complex factors is a necessary and early event in this process. How MAPK and IEG expression are coupled during cardiac hypertrophy is not resolved. Here, in vitro, in rodent models and in human samples, we demonstrate that MAPK-stimulated IEG induction depends on the mitogen and stress-activated protein kinase (MSK) and its phosphorylation of histone H3 at serine 28 (pH3S28). pH3S28 in IEG promoters in turn recruits Brg1, a BAF60 ATP-dependent chromatin remodelling complex component, initiating gene expression. Without MSK activity and IEG induction, the hypertrophic response is suppressed. These studies provide new mechanistic insights into the role of MAPK pathways in signalling to the epigenome and regulation of gene expression during cardiac hypertrophy.

+view abstract Cells, PMID: 35203255

Ciraku L, Bacigalupa ZA, Ju J, Moeller RA, Le Minh G, Lee RH, Smith MD, Ferrer CM, Trefely S, Izzo LT, Doan MT, Gocal WA, D'Agostino L, Shi W, Jackson JG, Katsetos CD, Wellen KE, Snyder NW, Reginato MJ Epigenetics

Glioblastomas (GBMs) preferentially generate acetyl-CoA from acetate as a fuel source to promote tumor growth. O-GlcNAcylation has been shown to be elevated by increasing O-GlcNAc transferase (OGT) in many cancers and reduced O-GlcNAcylation can block cancer growth. Here, we identify a novel mechanism whereby OGT regulates acetate-dependent acetyl-CoA and lipid production by regulating phosphorylation of acetyl-CoA synthetase 2 (ACSS2) by cyclin-dependent kinase 5 (CDK5). OGT is required and sufficient for GBM cell growth and regulates acetate conversion to acetyl-CoA and lipids. Elevating O-GlcNAcylation in GBM cells increases phosphorylation of ACSS2 on Ser-267 in a CDK5-dependent manner. Importantly, we show that ACSS2 Ser-267 phosphorylation regulates its stability by reducing polyubiquitination and degradation. ACSS2 Ser-267 is critical for OGT-mediated GBM growth as overexpression of ACSS2 Ser-267 phospho-mimetic rescues growth in vitro and in vivo. Importantly, we show that pharmacologically targeting OGT and CDK5 reduces GBM growth ex vivo. Thus, the OGT/CDK5/ACSS2 pathway may be a way to target altered metabolic dependencies in brain tumors.

+view abstract Oncogene, PMID: 35190642

Li J, Bergmann L, Rafael de Almeda A, Webb KM, Gogol MM, Voigt P, Liu Y, Liang H, Smolle MM Epigenetics

The Isw1b chromatin-remodeling complex is specifically recruited to gene bodies to help retain pre-existing histones during transcription by RNA polymerase II. Recruitment is dependent on H3K36 methylation and the Isw1b subunit Ioc4, which contains an N-terminal PWWP domain. Here, we present the crystal structure of the Ioc4-PWWP domain, including a detailed functional characterization of the domain on its own as well as in the context of full-length Ioc4 and the Isw1b remodeler. The Ioc4-PWWP domain preferentially binds H3K36me3-containing nucleosomes. Its ability to bind DNA is required for nucleosome binding. It is also furthered by the unique insertion motif present in Ioc4-PWWP. The ability to bind H3K36me3 and DNA promotes the interaction of full-length Ioc4 with nucleosomes in vitro and they are necessary for its recruitment to gene bodies in vivo. Furthermore, a fully functional Ioc4-PWWP domain promotes efficient remodeling by Isw1b and the maintenance of ordered chromatin in vivo, thereby preventing the production of non-coding RNAs.

+view abstract Nucleic acids research, PMID: 35188579

Open Access
Ronsmans S, S酶rig Hougaard K, Nawrot TS, Plusquin M, Huaux F, Jes煤s Cruz M, Moldovan H, Verpaele S, Jayapala M, Tunney M, Humblet-Baron S, Dirven H, Cecilie Nygaard U, Lindeman B, Duale N, Liston A, Meulengracht Flachs E, Kastaniegaard K, Ketzel M, Goetz J, Vanoirbeek J, Ghosh M, Hoet PHM Immunology

Immune-mediated, noncommunicable diseases-such as autoimmune and inflammatory diseases-are chronic disorders, in which the interaction between environmental exposures and the immune system plays an important role. The prevalence and societal costs of these diseases are rising in the European Union. The EXIMIOUS consortium-gathering experts in immunology, toxicology, occupational health, clinical medicine, exposure science, epidemiology, bioinformatics, and sensor development-will study eleven European study populations, covering the entire lifespan, including prenatal life. Innovative ways of characterizing and quantifying the exposome will be combined with high-dimensional immunophenotyping and -profiling platforms to map the immune effects (immunome) induced by the exposome. We will use two main approaches that "meet in the middle"-one starting from the exposome, the other starting from health effects. Novel bioinformatics tools, based on systems immunology and machine learning, will be used to integrate and analyze these large datasets to identify immune fingerprints that reflect a person's lifetime exposome or that are early predictors of disease. This will allow researchers, policymakers, and clinicians to grasp the impact of the exposome on the immune system at the level of individuals and populations.

+view abstract Environmental Epidemiology, PMID: 35169671

Hanna CW, Huang J, Belton C, Reinhardt S, Dahl A, Andrews S, Stewart AF, Kranz A, Kelsey G Epigenetics,Bioinformatics

Histone 3 lysine 4 trimethylation (H3K4me3) is an epigenetic mark found at gene promoters and CpG islands. H3K4me3 is essential for mammalian development, yet mechanisms underlying its genomic targeting are poorly understood. H3K4me3 methyltransferases SETD1B and MLL2 (KMT2B) are essential for oogenesis. We investigated changes in H3K4me3 in Setd1b conditional knockout (cKO) oocytes using ultra-low input ChIP-seq, with comparisons to DNA methylation and gene expression analyses. H3K4me3 was redistributed in Setd1b cKO oocytes showing losses at active gene promoters associated with downregulated gene expression. Remarkably, many regions also gained H3K4me3, in particular those that were DNA hypomethylated, transcriptionally inactive and CpG-rich, which are hallmarks of MLL2 targets. Consequently, loss of SETD1B disrupts the balance between MLL2 and de novo DNA methyltransferases in determining the epigenetic landscape during oogenesis. Our work reveals two distinct, complementary mechanisms of genomic targeting of H3K4me3 in oogenesis, with SETD1B linked to gene expression and MLL2 to CpG content.

+view abstract Nucleic acids research, PMID: 35137160

Yurchenko AA, Pop OT, Ighilahriz M, Padioleau I, Rajabi F, Sharpe HJ, Poulalhon N, Dreno B, Khammari A, Delord M, Alberdi A, Soufir N, Battistella M, Mourah S, Bouquet F, Savina A, Besse A, Mendez-Lopez M, Grange F, Monestier S, Mortier L, Meyer N, Dutriaux C, Robert C, Sa茂ag P, Herms F, Lambert J, de Sauvage F, Dumaz N, Flatz L, Basset-Seguin N, Nikolaev SI Signalling

Vismodegib is approved for the treatment of locally advanced basal cell carcinoma (laBCC), but some cases demonstrate intrinsic resistance (IR) to the drug. We sought to assess the frequency of IR to vismodegib in laBCC and its underlying genomic mechanisms.

+view abstract Clinical Cancer 51在线, PMID: 35078858

Open Access
Suriyalaksh M, Raimondi C, Mains A, Segonds-Pichon A, Mukhtar S, Murdoch S, Aldunate R, Krueger F, Guimer脿 R, Andrews S, Sales-Pardo M, Casanueva O Epigenetics,Bioinformatics

We design a "wisdom-of-the-crowds" GRN inference pipeline and couple it to complex network analysis to understand the organizational principles governing gene regulation in long-lived /Notch . The GRN has three layers (input, core, and output) and is topologically equivalent to bow-tie/hourglass structures prevalent among metabolic networks. To assess the functional importance of structural layers, we screened 80% of regulators and discovered 50 new aging genes, 86% with human orthologues. Genes essential for longevity-including ones involved in insulin-like signaling (ILS)-are at the core, indicating that GRN's structure is predictive of functionality. We used reporters and a novel functional network covering 5,497 genetic interactions to make mechanistic predictions. We used genetic epistasis to test some of these predictions, uncovering a novel transcriptional regulator, , that works alongside DAF-16/FOXO. We present a framework with predictive power that can accelerate discovery in and potentially humans.

+view abstract iScience, PMID: 35036864

Prescott JA, Balmanno K, Mitchell JP, Okkenhaug H, Cook SJ Signalling,Imaging

Inhibitor of kappa B (I魏B) kinase 尾 (IKK尾) has long been viewed as the dominant IKK in the canonical nuclear factor-魏B (NF-魏B) signalling pathway, with IKK伪 being more important in non-canonical NF-魏B activation. Here we have investigated the role of IKK伪 and IKK尾 in canonical NF-魏B activation in colorectal cells using CRISPR-Cas9 knock-out cell lines, siRNA and selective IKK尾 inhibitors. IKK伪 and IKK尾 were redundant for I魏B伪 phosphorylation and turnover since loss of IKK伪 or IKK尾 alone had little (SW620 cells) or no (HCT116 cells) effect. However, in HCT116 cells IKK伪 was the dominant IKK required for basal phosphorylation of p65 at S536, stimulated phosphorylation of p65 at S468, nuclear translocation of p65 and the NF-魏B-dependent transcriptional response to both TNF伪 and IL-1伪. In these cells IKK尾 was far less efficient at compensating for the loss of IKK伪 than IKK伪 was able to compensate for the loss of IKK尾. This was confirmed when siRNA was used to knock-down the non-targeted kinase in single KO cells. Critically, the selective IKK尾 inhibitor BIX02514 confirmed these observations in WT cells and similar results were seen in SW620 cells. Notably, whilst IKK伪 loss strongly inhibited TNF伪-dependent p65 nuclear translocation, IKK伪 and IKK尾 contributed equally to c-Rel nuclear translocation indicating that different NF-魏B subunits exhibit different dependencies on these IKKs. These results demonstrate a major role for IKK伪 in canonical NF-魏B signalling in colorectal cells and may be relevant to efforts to design IKK inhibitors, which have focused largely on IKK尾 to date.

+view abstract The Biochemical journal, PMID: 35029639

Velten B, Braunger JM, Argelaguet R, Arnol D, Wirbel J, Bredikhin D, Zeller G, Stegle O Epigenetics

Factor analysis is a widely used method for dimensionality reduction in genome biology, with applications from personalized health to single-cell biology. Existing factor analysis models assume independence of the observed samples, an assumption that fails in spatio-temporal profiling studies. Here we present MEFISTO, a flexible and versatile toolbox for modeling high-dimensional data when spatial or temporal dependencies between the samples are known. MEFISTO maintains the established benefits of factor analysis for multimodal data, but enables the performance of spatio-temporally informed dimensionality reduction, interpolation, and separation of smooth from non-smooth patterns of variation. Moreover, MEFISTO can integrate multiple related datasets by simultaneously identifying and aligning the underlying patterns of variation in a data-driven manner. To illustrate MEFISTO, we apply the model to different datasets with spatial or temporal resolution, including an evolutionary atlas of organ development, a longitudinal microbiome study, a single-cell multi-omics atlas of mouse gastrulation and spatially resolved transcriptomics.

+view abstract Nature methods, PMID: 35027765

Whale AJ, King M, Hull RM, Krueger F, Houseley J Epigenetics

Adaptive mutations can cause drug resistance in cancers and pathogens, and increase the tolerance of agricultural pests and diseases to chemical treatment. When and how adaptive mutations form is often hard to discern, but we have shown that adaptive copy number amplification of the copper resistance gene CUP1 occurs in response to environmental copper due to CUP1 transcriptional activation. Here we dissect the mechanism by which CUP1 transcription in budding yeast stimulates copy number variation (CNV). We show that transcriptionally stimulated CNV requires TREX-2 and Mediator, such that cells lacking TREX-2 or Mediator respond normally to copper but cannot acquire increased resistance. Mediator and TREX-2 can cause replication stress by tethering transcribed loci to nuclear pores, a process known as gene gating, and transcription at the CUP1 locus causes a TREX-2-dependent accumulation of replication forks indicative of replication fork stalling. TREX-2-dependent CUP1 gene amplification occurs by a Rad52 and Rad51-mediated homologous recombination mechanism that is enhanced by histone H3K56 acetylation and repressed by Pol32 and Pif1. CUP1 amplification is also critically dependent on late-firing replication origins present in the CUP1 repeats, and mutations that remove or inactivate these origins strongly suppress the acquisition of copper resistance. We propose that replicative stress imposed by nuclear pore association causes replication bubbles from these origins to collapse soon after activation, leaving a tract of H3K56-acetylated chromatin that promotes secondary recombination events during elongation after replication fork re-start events. The capacity for inefficient replication origins to promote copy number variation renders certain genomic regions more fragile than others, and therefore more likely to undergo adaptive evolution through de novo gene amplification.

+view abstract Nucleic acids research, PMID: 35018465

Open Access
Misheva M, Kotzamanis K, Davies LC, Tyrrell VJ, Rodrigues PRS, Benavides GA, Hinz C, Murphy RC, Kennedy P, Taylor PR, Rosas M, Jones SA, McLaren JE, Deshpande S, Andrews R, Schebb NH, Czubala MA, Gurney M, Aldrovandi M, Meckelmann SW, Ghazal P, Darley-Usmar V, White DA, O'Donnell VB Signalling

Oxylipins are potent biological mediators requiring strict control, but how they are removed en masse during infection and inflammation is unknown. Here we show that lipopolysaccharide (LPS) dynamically enhances oxylipin removal via mitochondrial 尾-oxidation. Specifically, genetic or pharmacological targeting of carnitine palmitoyl transferase 1 (CPT1), a mitochondrial importer of fatty acids, reveal that many oxylipins are removed by this protein during inflammation in vitro and in vivo. Using stable isotope-tracing lipidomics, we find secretion-reuptake recycling for 12-HETE and its intermediate metabolites. Meanwhile, oxylipin 尾-oxidation is uncoupled from oxidative phosphorylation, thus not contributing to energy generation. Testing for genetic control checkpoints, transcriptional interrogation of human neonatal sepsis finds upregulation of many genes involved in mitochondrial removal of long-chain fatty acyls, such as ACSL1,3,4, ACADVL, CPT1B, CPT2 and HADHB. Also, ACSL1/Acsl1 upregulation is consistently observed following the treatment of human/murine macrophages with LPS and IFN-纬. Last, dampening oxylipin levels by 尾-oxidation is suggested to impact on their regulation of leukocyte functions. In summary, we propose mitochondrial 尾-oxidation as a regulatory metabolic checkpoint for oxylipins during inflammation.

+view abstract Nature communications, PMID: 35013270

Open Access
Crainiciuc G, Palomino-Segura M, Molina-Moreno M, Sicilia J, Aragones DG, Li JLY, Madurga R, Adrover JM, Aroca-Crevill茅n A, Martin-Salamanca S, Del Valle AS, Castillo SD, Welch HCE, Soehnlein O, Graupera M, S谩nchez-Cabo F, Zarbock A, Smithgall TE, Di Pilato M, Mempel TR, Tharaux PL, Gonz谩lez SF, Ayuso-Sacido A, Ng LG, Calvo GF, Gonz谩lez-D铆az I, D铆az-de-Mar铆a F, Hidalgo A

Transcriptional and proteomic profiling of individual cells have revolutionized interpretation of biological phenomena by providing cellular landscapes of healthy and diseased tissues. These approaches, however, do not describe dynamic scenarios in which cells continuously change their biochemical properties and downstream 'behavioural' outputs. Here we used 4D live imaging to record tens to hundreds of morpho-kinetic parameters describing the dynamics of individual leukocytes at sites of active inflammation. By analysing more than 100,000 reconstructions of cell shapes and tracks over time, we obtained behavioural descriptors of individual cells and used these high-dimensional datasets to build behavioural landscapes. These landscapes recognized leukocyte identities in the inflamed skin and trachea, and uncovered a continuum of neutrophil states inside blood vessels, including a large, sessile state that was embraced by the underlying endothelium and associated with pathogenic inflammation. Behavioural screening in 24 mouse mutants identified the kinase Fgr as a driver of this pathogenic state, and interference with Fgr protected mice from inflammatory injury. Thus, behavioural landscapes report distinct properties of dynamic environments at high cellular resolution.

+view abstract Nature, PMID: 34987220

Lozano T, Conde E, Mart铆n-Otal C, Navarro F, Lasarte-Cia A, Nasrallah R, Alignani D, Gorraiz M, Sarobe P, Romero JP, Vilas A, Roychoudhuri R, Herv谩s-Stubbs S, Casares N, Lasarte JJ Immunology

Adoptive cell transfer therapy using CD8 T lymphocytes showed promising results eradicating metastatic malignancies. However, several regulatory mechanisms limit its efficacy. We studied the role of the expression of the transcription factor FOXP3 on CD8 T cell function and anti-tumor immunity. Here we show that suboptimal T cell receptor stimulation of CD8 T cells upregulates FOXP3 in vitro. Similarly, CD8 T cells transferred into tumor-bearing mice upregulate FOXP3 in vivo. Cell-intrinsic loss of FOXP3 by CD8 T cells resulted in improved functionality after TCR stimulation and better antitumor responses in vivo. Inhibition of the FOXP3/NFAT interaction likewise improved CD8 T cell functionality. Transcriptomic analysis of cells after TCR stimulation revealed an enrichment of genes implicated in the response to IFN-纬, IFN-伪, inflammatory response, IL-6/JAK/STAT, G2M checkpoint and IL-2/STAT signaling in FOXP3-deficient CD8 T cells with respect to FOXP3-wt CD8 T cells. Our results suggest that transient expression of FOXP3 by CD8 T cells in the tumor microenvironment restrains their anti-tumor activity, with clear implications for improving T cell responses during immunotherapy.

+view abstract Cancer letters, PMID: 34973390

Sandovici I, Georgopoulou A, P茅rez-Garc铆a V, Hufnagel A, L贸pez-Tello J, Lam BYH, Schiefer SN, Gaudreau C, Santos F, Hoelle K, Yeo GSH, Burling K, Reiterer M, Fowden AL, Burton GJ, Branco CM, Sferruzzi-Perri AN, Const芒ncia M Epigenetics

In all eutherian mammals, growth of the fetus is dependent upon a functional placenta, but whether and how the latter adapts to putative fetal signals is currently unknown. Here, we demonstrate, through fetal, endothelial, hematopoietic, and trophoblast-specific genetic manipulations in the mouse, that endothelial and fetus-derived IGF2 is required for the continuous expansion of the feto-placental microvasculature in late pregnancy. The angiocrine effects of IGF2 on placental microvasculature expansion are mediated, in part, through IGF2R and angiopoietin-Tie2/TEK signaling. Additionally, IGF2 exerts IGF2R-ERK1/2-dependent pro-proliferative and angiogenic effects on primary feto-placental endothelial cells ex聽vivo. Endothelial and fetus-derived IGF2 also plays an important role in trophoblast morphogenesis, acting through Gcm1 and Synb. Thus, our study reveals a direct role for the imprinted Igf2-Igf2r axis on matching placental development to fetal growth and establishes the principle that hormone-like signals from the fetus play important roles in controlling placental microvasculature and trophoblast morphogenesis.

+view abstract Developmental cell, PMID: 34963058

Open Access
Runfola M, Perni M, Yang X, Marchese M, Bacci A, Mero S, Santorelli FM, Polini B, Chiellini G, Giuliani D, Vilella A, Bodria M, Daini E, Vandini E, Rudge S, Gul S, Wakelam MOJ, Vendruscolo M, Rapposelli S Signalling

The identification of effective pharmacological tools for Alzheimer's disease (AD) represents one of the main challenges for therapeutic discovery. Due to the variety of pathological processes associated with AD, a promising route for pharmacological intervention involves the development of new chemical entities that can restore cellular homeostasis. To investigate this strategy, we designed and synthetized SG2, a compound related to the thyroid hormone thyroxine, that shares a pleiotropic activity with its endogenous parent compound, including autophagic flux promotion, neuroprotection, and metabolic reprogramming. We demonstrate herein that SG2 acts in a pleiotropic manner to induce recovery in a model of AD based on the overexpression of A尾42 and improves learning abilities in the 5XFAD mouse model of AD. Further, in vitro ADME-Tox profiling and toxicological studies in zebrafish confirmed the low toxicity of this compound, which represents a chemical starting point for AD drug development.

+view abstract Pharmaceuticals, PMID: 34959730

Open Access
Rivera Del Alamo MM, Reilas T, Lukasik K, Galv茫o AM, Yeste M, Katila T Epigenetics

Intrauterine devices (IUDs) are used in mares to suppress oestrous behaviour, but the underlying mechanism is yet to be elucidated. The presence of an embryo or an IUD prevents cyclooxygenase-2 (COX-2) and, subsequently, prostaglandin (PG) release and luteolysis. However, inflammation may also be involved. Endometrial inflammatory markers in uterine lavage fluid were measured on Day 10 (EXP 1, = 25) and Day 15 (EXP 2, = 27) after ovulation in inseminated mares, non-pregnant or pregnant, and in mares in which a small plastic sphere had been inserted into the uterus 4 (EXP 1) or 3 days (EXP 2) after ovulation. Uterine lavage fluid samples were analysed for nitric oxide (NO), prostaglandin E (PGE) (only EXP 1), prostaglandin F (PGF), inhibin A and cytokines, and blood samples for progesterone and oestradiol. On Day 10, the concentration of PGF was lower ( < 0.05) in the IUD group than in pregnant mares. The concentration of the modulatory cytokine IL-10 was significantly higher in the IUD group in comparison to non-pregnant mares, and inhibin A was significantly higher in IUD mares than in the pregnant counterparts on Day 15. The results suggest that the presence of IUD causes endometrial inflammation which is at a resolution stage on Day 15.

+view abstract Animals, PMID: 34944269

Open Access
Mikulasova A, Kent D, Trevisan-Herraz M, Karataraki N, Fung KTM, Ashby C, Cieslak A, Yaccoby S, van Rhee F, Zangari M, Thanendrarajan S, Schinke C, Morgan GJ, Asnafi V, Spicuglia S, Brackley CA, Corcoran AE, Hambleton S, Walker BA, Rico D, Russell LJ Immunology

Chromosomal translocations are important drivers of hematological malignancies whereby proto-oncogenes are activated by juxtaposition with super-enhancers, often called enhancer hijacking. We analysed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus () and proto-oncogene that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterised the normal chromatin landscape of the human locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the locus of healthy B cells that was absent in samples with translocations. The appearance of H3K4me3-BD over in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with super-enhancer hijacking of other common oncogenes in B cell (, and /) and in T-cell malignancies (, and ). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, where the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.

+view abstract Genome research, PMID: 34933939

Kubinyecz O, Santos F, Drage D, Reik W, Eckersley-Maslin MA Epigenetics

Zygotic genome activation (ZGA) represents the initiation of transcription following fertilisation. Despite its importance, we know little of the molecular events that initiate mammalian ZGA in vivo. Recent in vitro studies in mouse embryonic stem cells have revealed developmental pluripotency associated 2 and 4 (Dppa2/4) as key regulators of ZGA-associated transcription. However, their roles in initiating ZGA in vivo remain unexplored. We reveal that Dppa2/4 proteins are present in the nucleus at all stages of preimplantation development and associate with mitotic chromatin. We generated conditional single and double maternal knockout mouse models to deplete maternal stores of Dppa2/4. Importantly, Dppa2/4 maternal knockout mice were fertile when mated with wild-type males. Immunofluorescence and transcriptome analyses of two-cell embryos revealed that, although ZGA took place, there were subtle defects in embryos that lacked maternal Dppa2/4. Strikingly, heterozygous offspring that inherited the null allele maternally had higher preweaning lethality than those that inherited the null allele paternally. Together, our results show that although Dppa2/4 are dispensable for ZGA transcription, maternal stores have an important role in offspring survival, potentially via epigenetic priming of developmental genes.

+view abstract Development, PMID: 34931676

Gould SA, Gilley J, Ling K, Jafar-Nejad P, Rigo F, Coleman M

Activation of the pro-degenerative protein SARM1 after diverse physical and disease-relevant injuries causes programmed axon degeneration. Original studies indicate that substantially decreased SARM1 levels are required for neuroprotection. However, we demonstrate, in Sarm1 haploinsufficient mice, that lowering SARM1 levels by 50% delays programmed axon degeneration in聽vivo after sciatic nerve transection and partially prevents neurite outgrowth defects in mice lacking the pro-survival factor NMNAT2. In聽vitro, the rate of degeneration in response to traumatic, neurotoxic, and genetic triggers of SARM1 activation is also slowed. Finally, we demonstrate that Sarm1 antisense oligonucleotides decrease SARM1 levels by more than 50% in聽vitro, which delays or prevents programmed axon degeneration. Combining Sarm1 haploinsufficiency with antisense oligonucleotides further decreases SARM1 levels and prolongs protection after neurotoxic injury. These data demonstrate that axon protection occurs in a Sarm1 gene dose-responsive manner and that SARM1-lowering agents have therapeutic potential, making Sarm1-targeting antisense oligonucleotides a promising therapeutic strategy.

+view abstract Cell reports, PMID: 34910914