51在线

 

Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access
Yu H, Qi Y, Yang B, Yang X, Ding Y Immunology

RNA G-quadruplex (rG4) is a vital RNA tertiary structure motif that involves the base pairs on both Hoogsteen and Watson-Crick faces of guanines. rG4 is of great importance in the post-transcriptional regulation of gene expression. Experimental technologies have advanced to identify in vitro and in vivo rG4s across diverse transcriptomes. Building on these recent advances, here we present G4Atlas, the first transcriptome-wide G-quadruplex database, in which we have collated, classified, and visualized transcriptome rG4 experimental data, generated from rG4-seq, chemical profiling and ligand-binding methods. Our comprehensive database includes transcriptome-wide rG4s generated from 82 experimental treatments and 238 samples across ten species. In addition, we have also included RNA secondary structure prediction information across both experimentally identified and unidentified rG4s to enable users to display any potential competitive folding between rG4 and RNA secondary structures. As such, G4Atlas will enable users to explore the general functions of rG4s in diverse biological processes. In addition, G4Atlas lays the foundation for further data-driven deep learning algorithms to examine rG4 structural features.

+view abstract Nucleic acids research, PMID: 36243987

Open Access
Gudmundsson SR, Kallio KA, Vihinen H, Jokitalo E, Ktistakis N, Eskelinen EL Signalling

Autophagosome biogenesis occurs in the transient subdomains of the endoplasmic reticulum that are called omegasomes, which, in fluorescence microscopy, appear as small puncta, which then grow in diameter and finally shrink and disappear once the autophagosome is complete. Autophagosomes are formed by phagophores, which are membrane cisterns that elongate and close to form the double membrane that limits autophagosomes. Earlier electron-microscopy studies showed that, during elongation, phagophores are lined by the endoplasmic reticulum on both sides. However, the morphology of the very early phagophore precursors has not been studied at the electron-microscopy level. We used live-cell imaging of cells expressing markers of phagophore biogenesis combined with correlative light-electron microscopy, as well as electron tomography of ATG2A/B-double-deficient cells, to reveal the high-resolution morphology of phagophore precursors in three dimensions. We showed that phagophores are closed or nearly closed into autophagosomes already at the stage when the omegasome diameter is still large. We further observed that phagophore precursors emerge next to the endoplasmic reticulum as bud-like highly curved membrane cisterns with a small opening to the cytosol. The phagophore precursors then open to form more flat cisterns that elongate and curve to form the classically described crescent-shaped phagophores.

+view abstract Cells, PMID: 36231043

Liston A Immunology

Immunology Futures is a new articles series for Immunology & Cell Biology. Immunology Futures is designed as a forum to promote dialog with the immunology research community, in particular early-career researchers. The series aims to be a platform for career advice and to elevate the voices of diverse immunologists to provide multiple perspectives on a successful career in immunology.

+view abstract Immunology and cell biology, PMID: 36210059

Open Access
Staels F, De Keukeleere K, Kinnunen M, Keskitalo S, Lorenzetti F, Vanmeert M, Prezzemolo T, Pasciuto E, Lescrinier E, Bossuyt X, Gerbaux M, Willemsen M, Neumann J, Van Loo S, Corveleyn A, Willekens K, Stalmans I, Meyts I, Liston A, Humblet-Baron S, Sepp盲nen M, Varjosalo M, Schrijvers R Immunology

NFKB1 haploinsufficiengcy was first described in 2015 in three families with common variable immunodeficiency (CVID), presenting heterogeneously with symptoms of increased infectious susceptibility, skin lesions, malignant lymphoproliferation and autoimmunity. The described mutations all led to a rapid degradation of the mutant protein, resulting in a p50 haploinsufficient state. Since then, more than 50 other mutations have been reported, located throughout different domains of NFKB1 with the majority situated in the N-terminal Rel homology domain (RHD). The clinical spectrum has also expanded with possible disease manifestations in almost any organ system. In silico prediction tools are often used to estimate the pathogenicity of NFKB1 variants but to prove causality between disease and genetic findings, further downstream functional validation is required. In this report, we studied 2 families with CVID and two novel variants in (c.1638-2A>G and c.787G>C). Both mutations affected mRNA and/or protein expression of NFKB1 and resulted in excessive NLRP3 inflammasome activation in patient macrophages and upregulated interferon stimulated gene expression. Protein-protein interaction analysis demonstrated a loss of interaction with NFKB1 interaction partners for the p.V263L mutation. In conclusion, we proved pathogenicity of two novel variants in in two families with CVID characterized by variable and incomplete penetrance.

+view abstract Frontiers in immunology, PMID: 36203612

Imianowski CJ, Whiteside SK, Lozano T, Evans AC, Benson JD, Courreges CJF, Sadiyah F, Lau CM, Zandhuis ND, Grant FM, Schuijs MJ, Vardaka P, Kuo P, Soilleux EJ, Yang J, Sun JC, Kurosaki T, Okkenhaug K, Halim TYF, Roychoudhuri R Immunology

Natural killer (NK) cells are critical to immune surveillance against infections and cancer. Their role in immune surveillance requires that NK cells are present within tissues in a quiescent state. Mechanisms by which NK cells remain quiescent in tissues are incompletely elucidated. The transcriptional repressor BACH2 plays a critical role within the adaptive immune system, but its function within innate lymphocytes has been unclear. Here, we show that BACH2 acts as an intrinsic negative regulator of NK cell maturation and function. BACH2 is expressed within developing and mature NK cells and promotes the maintenance of immature NK cells by restricting their maturation in the presence of weak stimulatory signals. Loss of BACH2 within NK cells results in accumulation of activated NK cells with unrestrained cytotoxic function within tissues, which mediate augmented immune surveillance to pulmonary cancer metastasis. These findings establish a critical function of BACH2 as a global negative regulator of innate cytotoxic function and tumor immune surveillance by NK cells.

+view abstract The Journal of experimental medicine, PMID: 36178457

Jonckheere AC, Steelant B, Seys SF, Cremer J, Dilissen E, Boon L, Liston A, Schrijvers R, Breynaert C, Vanoirbeek JAJ, Ceuppens JL, Bullens DMA Immunology

Regulatory T cells (Tregs) that express the transcription factor Foxp3 have a critical role in limiting inflammatory processes and tissue damage. Whether Tregs are functional in maintaining epithelial barriers and in control of tight junction expression has not yet been explored. In this study, we investigated the effect of Treg deficiency on the airway epithelial barrier in an experimental murine model in which diphtheria toxin was repeatedly injected in Foxp3-diphtheria toxin receptor (DTR) mice to deplete Tregs. This resulted in spontaneous peribronchial inflammation and led to a systemic and local increase of IL-4, IL-5, CCL3, IFN-纬, and IL-10 and a local (lung) increase of IL-6 and IL-33 and decreased amphiregulin levels. Moreover, Treg depletion increased airway permeability and decreased epithelial tight junction (protein and mRNA) expression. CTLA4-Ig treatment of Treg-depleted mice almost completely prevented barrier dysfunction together with suppression of lung inflammation and cytokine secretion. Treatment with anti-IL-4 partly reversed the effects of Treg depletion on tight junction expression, whereas neutralization of IL-6 of IFN-纬 had either no effect or only a limited effect. We conclude that Tregs are essential to protect the epithelial barrier at the level of tight junctions by restricting spontaneous T cell activation and uncontrolled secretion of cytokines, in particular IL-4, in the bronchi.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 36165171

Open Access
Clark SJ, Argelaguet R, Lohoff T, Krueger F, Drage D, G枚ttgens B, Marioni JC, Nichols J, Reik W Epigenetics

Perturbation of DNA methyltransferases (DNMTs) and of the active DNA demethylation pathway via ten-eleven translocation (TET) methylcytosine dioxygenases results in severe developmental defects and embryonic lethality. Dynamic control of DNA methylation is therefore vital for embryogenesis, yet the underlying mechanisms remain poorly understood.

+view abstract Genome biology, PMID: 36163261

Open Access
Arez M, Eckersley-Maslin M, Klobu膷ar T, von Gilsa Lopes J, Krueger F, Mupo A, Raposo AC, Oxley D, Mancino S, Gendrel AV, Bernardes de Jesus B, da Rocha ST Epigenetics,Bioinformatics, Mass Spectrometry

Reprogramming of somatic cells into induced Pluripotent Stem Cells (iPSCs) is a major leap towards personalised approaches to disease modelling and cell-replacement therapies. However, we still lack the ability to fully control the epigenetic status of iPSCs, which is a major hurdle for their downstream applications. Epigenetic fidelity can be tracked by genomic imprinting, a phenomenon dependent on DNA methylation, which is frequently perturbed in iPSCs by yet unknown reasons. To try to understand the causes underlying these defects, we conducted a thorough imprinting analysis using IMPLICON, a high-throughput method measuring DNA methylation levels, in multiple female and male murine iPSC lines generated under different experimental conditions. Our results show that imprinting defects are remarkably common in iPSCs, but their nature depends on the sex of donor cells and their response to culture conditions. Imprints in female iPSCs resist the initial genome-wide DNA demethylation wave during reprogramming, but ultimately cells accumulate hypomethylation defects irrespective of culture medium formulations. In contrast, imprinting defects on male iPSCs depends on the experimental conditions and arise during reprogramming, being mitigated by the addition of vitamin C (VitC). Our findings are fundamental to further optimise reprogramming strategies and generate iPSCs with a stable epigenome.

+view abstract Nature communications, PMID: 36114205

Open Access
Hornigold K, Chu JY, Chetwynd SA, Machin PA, Crossland L, Pantarelli C, Anderson KE, Hawkins PT, Segonds-Pichon A, Oxley D, Welch HCE Signalling,Bioinformatics, Mass Spectrometry

Host defense against bacterial and fungal infections diminishes with age. In humans, impaired neutrophil responses are thought to contribute to this decline. However, it remains unclear whether neutrophil responses are also impaired in old mice. Here, we investigated neutrophil function in old mice, focusing on responses primed by lipopolysaccharide (LPS), an endotoxin released by gram-negative bacteria like , which signals through toll-like receptor (TLR) 4. We show that old mice have a reduced capacity to clear pathogenic during septic peritonitis. Neutrophil recruitment was elevated during LPS-induced but not aseptic peritonitis. Neutrophils from old mice showed reduced killing of . Their reactive oxygen species (ROS) production was impaired upon priming with LPS but not with GM-CSF/TNF伪. Phagocytosis and degranulation were reduced in a partially LPS-dependent manner, whereas impairment of NET release in response to was independent of LPS. Unexpectedly, chemotaxis was normal, as were Rac1 and Rac2 GTPase activities. LPS-primed activation of Erk and p38 Mapk was defective. PIP production was reduced upon priming with LPS but not with GM-CSF/TNF伪, whereas PIP levels were constitutively low. The expression of 5% of neutrophil proteins was dysregulated in old age. Granule proteins, particularly cathepsins and serpins, as well as TLR-pathway proteins and membrane receptors were upregulated, whereas chromatin and RNA regulators were downregulated. The upregulation of CD180 and downregulation of MyD88 likely contribute to the impaired LPS signaling. In summary, all major neutrophil responses except chemotaxis decline with age in mice, particularly upon LPS priming. This LPS/TLR4 pathway dependence resolves previous controversy regarding effects of age on murine neutrophils and confirms that mice are an appropriate model for the decline in human neutrophil function.

+view abstract Frontiers in immunology, PMID: 36090969

Open Access
Barton PR, Davenport AJ, Hukelmann J, Cantrell DA, Stinchcombe JC, Richard AC, Griffiths GM Immunology

Bach2 codes for a transcriptional regulator exerting major influences on T cell mediated immune regulation. Effector CTLs derived from in vitro activation of murine CD8 T cells showed increased proliferative and cytolytic capacity in the absence of BACH2. Before activation, BACH2-deficient splenic CD8 T cells had a higher abundance of memory and reduced abundance of na茂ve cells compared to wild-type. CTLs derived from central memory T cells were more potently cytotoxic than those derived from na茂ve T cells, but even within separated subsets, BACH2-deficiency conferred a cytotoxic advantage. Immunofluorescence and electron microscopy revealed larger granules in BACH2-deficient compared to wild-type CTLs, and proteomic analysis showed an increase in granule content, including perforin and granzymes. Thus, the enhanced cytotoxicity observed in effector CTLs lacking BACH2 arises not only from differences in their initial differentiation state but also inherent production of enlarged cytolytic granules. These results demonstrate how a single gene deletion can produce a CTL super-killer. This article is protected by copyright. All rights reserved.

+view abstract European journal of immunology, PMID: 36086884

Ravichandran M, Rafalski D, Davies CI, Ortega-Recalde O, Nan X, Glanfield CR, Kotter A, Misztal K, Wang AH, Wojciechowski M, Ra偶ew M, Mayyas IM, Kardailsky O, Schwartz U, Zembrzycki K, Morison IM, Helm M, Weichenhan D, Jurkowska RZ, Krueger F, Plass C, Zacharias M, Bochtler M, Hore TA, Jurkowski TP Bioinformatics

TET (ten-eleven translocation) enzymes catalyze the oxidation of 5-methylcytosine bases in DNA, thus driving active and passive DNA demethylation. Here, we report that the catalytic domain of mammalian TET enzymes favor CGs embedded within basic helix-loop-helix and basic leucine zipper domain transcription factor-binding sites, with up to 250-fold preference in vitro. Crystal structures and molecular dynamics calculations show that sequence preference is caused by intrasubstrate interactions and CG flanking sequence indirectly affecting enzyme conformation. TET sequence preferences are physiologically relevant as they explain the rates of DNA demethylation in TET-rescue experiments in culture and in vivo within the zygote and germ line. Most and least favorable TET motifs represent DNA sites that are bound by methylation-sensitive immediate-early transcription factors and octamer-binding transcription factor 4 (OCT4), respectively, illuminating TET function in transcriptional responses and pluripotency support.

+view abstract Science advances, PMID: 36070377

Open Access
Patalano S, Alsina A, Gregorio-Rodr铆guez C, Bachman M, Dreier S, Hernando-Herraez I, Nana P, Balasubramanian S, Sumner S, Reik W, Rulands S Epigenetics

Biological systems have the capacity to not only build and robustly maintain complex structures but also to rapidly break up and rebuild such structures. Here, using primitive societies of Polistes wasps, we show that both robust specialization and rapid plasticity are emergent properties of multi-scale dynamics. We combine theory with experiments that, after perturbing the social structure by removing the queen, correlate time-resolved multi-omics with video recordings. We show that the queen-worker dimorphism relies on the balance between the development of a molecular queen phenotype in all insects and colony-scale inhibition聽of this phenotype via asymmetric interactions. This allows Polistes to be stable against intrinsic perturbations of molecular states while reacting plastically to extrinsic cues affecting the whole society. Long-term stability of the social structure is reinforced by dynamic DNA methylation. Our study provides a general principle of how both specialization and plasticity can be achieved in biological systems. A record of this paper's transparent peer review process is included in the supplemental information.

+view abstract Cell systems, PMID: 36044898

Brochier W, Bricard O, Coulie PG Immunology

T cells are key effectors of our immune response against tumors and exert their antitumor effects upon recognizing a variety of tumor-specific peptides presented by HLA molecules on the surface of tumor cells. The identification of the tumor-specific antigens of a given tumor is not required for immune checkpoint therapy, which mainly reactivates existing tumor-specific T cells together with T cells of unknown specificities. To decrease the activation of non tumor-specific T cells, active or passive immunizations against tumor-specific antigens are considered. These immunizations require the identification of at least some of the tumor-specific antigens displayed on the tumor cells of a patient. While this has become an easy task for tumors with a large number of mutations generating neoantigens, it remains difficult for the remainder. Here, we review both some facts about human tumor-specific or tumor-associated antigens, as well as some hopes for their future use in cancer immunotherapy.

+view abstract Clinical cancer research : an official journal of the American Association for Cancer 51在线, PMID: 36044396

Brochier W, Bricard O, Coulie PG Immunology

T cells are key effectors of our immune response against tumors and exert their antitumor effects upon recognizing a variety of tumor-specific peptides presented by HLA molecules on the surface of tumor cells. The identification of the tumor-specific antigens of a given tumor is not required for immune checkpoint therapy (ICT), which mainly reactivates existing tumor-specific T cells together with T cells of unknown specificities. To decrease the activation of non-tumor-specific T cells, active or passive immunizations against tumor-specific antigens are considered. These immunizations require the identification of at least some of the tumor-specific antigens displayed on the tumor cells of a patient. While this has become an easy task for tumors with a large number of mutations generating neoantigens, it remains difficult for the remainder. Here, we review some facts about human tumor-specific or tumor-associated antigens, as well as some hopes for their future use in cancer immunotherapy.

+view abstract Clinical cancer research : an official journal of the American Association for Cancer 51在线, PMID: 36044396

Open Access
Palatella M, Guillaume SM, Linterman MA, Huehn J Immunology

In the last century, we have seen a dramatic rise in the number of older persons globally, a trend known as the grey (or silver) tsunami. People live markedly longer than their predecessors worldwide, due to remarkable changes in their lifestyle and in progresses made by modern medicine. However, the older we become, the more susceptible we are to a series of age-related pathologies, including infections, cancers, autoimmune diseases, and multi-morbidities. Therefore, a key challenge for our modern societies is how to cope with this fragile portion of the population, so that everybody could have the opportunity to live a long and healthy life. From a holistic point of view, aging results from the progressive decline of various systems. Among them, the distinctive age-dependent changes in the immune system contribute to the enhanced frailty of the elderly. One of these affects a population of lymphocytes, known as regulatory T cells (Tregs), as accumulating evidence suggest that there is a significant increase in the frequency of these cells in secondary lymphoid organs (SLOs) of aged animals. Although there are still discrepancies in the literature about modifications to their functional properties during aging, mounting evidence suggests a detrimental role for Tregs in the elderly in the context of bacterial and viral infections by suppressing immune responses against non-self-antigens. Interestingly, Tregs seem to also contribute to the reduced effectiveness of immunizations against many pathogens by limiting the production of vaccine-induced protective antibodies. In this review, we will analyze the current state of understandings about the role of Tregs in acute and chronic infections as well as in vaccination response in both humans and mice. Lastly, we provide an overview of current strategies for Treg modulation with potential future applications to improve the effectiveness of vaccines in older individuals.

+view abstract Frontiers in immunology, PMID: 36016952

Kivinen K, van Luenen HG, Alcalay M, Bock C, Dodzian J, Ho拧kov谩 K, Hoyle D, Hradil O, Christensen SK, Korn B, Kosteas T, Morales M, Skowronek K, Theodorou V, Van Minnebruggen G, Salamero J, Premvardhan L

Core facilities play a central role in the life sciences by generating data and ensuring quality standards. Their contributions to research should be appropriately acknowledged or cited in research papers.

+view abstract EMBO reports, PMID: 35997112

Worssam MD, Lambert J, Oc S, Taylor JC, Taylor AL, Dobnikar L, Chappell J, Harman JL, Figg NL, Finigan A, Foote K, Uryga AK, Bennett MR, Spivakov M, J酶rgensen HF

Quiescent, differentiated adult vascular smooth muscle cells (VSMCs) can be induced to proliferate and switch phenotype. Such plasticity underlies blood vessel homeostasis and contributes to vascular disease development. Oligoclonal VSMC contribution is a hallmark of end-stage vascular disease. Here we aim to understand cellular mechanisms underpinning generation of this VSMC oligoclonality.

+view abstract Cardiovascular research, PMID: 35994249

Lee JL, Fra-Bido SC, Burton AR, Innocentin S, Hill DL, Linterman MA Immunology

Vaccines typically protect against (re)infections by generating pathogen-neutralising antibodies. However, as we age, antibody-secreting cell formation and vaccine-induced antibody titres are reduced. Antibody-secreting plasma cells differentiate from B cells either early post-vaccination through the extrafollicular response or from the germinal centre (GC) reaction, which generates long-lived antibody-secreting cells. As the formation of both the extrafollicular antibody response and the GC requires the interaction of multiple cell types, the impaired antibody response in ageing could be caused by B cell intrinsic or extrinsic factors, or a combination of the two. Here, we show that B cells from older people do not have intrinsic defects in their proliferation and differentiation into antibody-secreting cells in vitro compared to those from the younger donors. However, adoptive transfer of B cells from aged mice to young recipient mice showed that differentiation into extrafollicular plasma cells was favoured at the expense of B cells entering the GC during the early stages of GC formation. In contrast, by the peak of the GC response, GC B cells derived from the donor cells of aged mice had expanded to the same extent as those from the younger donors. This indicates that age-related intrinsic B cell changes delay the GC response but are not responsible for the impaired antibody-secreting response or smaller peak GC response in ageing. Collectively, this study shows that B cells from aged individuals are not intrinsically defective in responding to stimulation and becoming antibody-secreting cells, implicating B cell-extrinsic factors as the primary cause of age-associated impairment in the humoral immunity.

+view abstract Aging cell, PMID: 35980826

Open Access
Yang M, Zhu P, Cheema J, Bloomer R, Mikulski P, Liu Q, Zhang Y, Dean C, Ding Y Immunology

Cellular RNAs are heterogeneous with respect to their alternative processing and secondary structures, but the functional importance of this complexity is still poorly understood. A set of alternatively processed antisense non-coding transcripts, which are collectively called COOLAIR, are generated at the Arabidopsis floral-repressor locus FLOWERING LOCUS C (FLC). Different isoforms of COOLAIR influence FLC transcriptional output in warm and cold conditions. Here, to further investigate the function of COOLAIR, we developed an RNA structure-profiling method to determine the in vivo structure of single RNA molecules rather than the RNA population average. This revealed that individual isoforms of the COOLAIR transcript adopt multiple structures with different conformational dynamics. The major distally polyadenylated COOLAIR isoform in warm conditions adopts three predominant structural conformations, the proportions and conformations of which change after cold exposure. An alternatively spliced, strongly cold-upregulated distal COOLAIR isoform shows high structural diversity, in contrast to proximally polyadenylated COOLAIR. A hyper-variable COOLAIR structural element was identified that was complementary to the FLC transcription start site. Mutations altering the structure of this region changed FLC expression and flowering time, consistent with an important regulatory role of the COOLAIR structure in FLC transcription. Our work demonstrates that isoforms of non-coding RNA transcripts adopt multiple distinct and functionally relevant structural conformations, which change in abundance and shape in response to external conditions.

+view abstract Nature, PMID: 35978193

Zhao C, Biondic S, Vandal K, Bjorklund AK, Hagemann-Jensen M, Sommer TM, Canizo J, Clark S, Raymond P, Zenklusen D, Rivron N, Reik W, Petropoulos S Epigenetics

The pre-conceptual, intrauterine, and early life environments can have a profound and long-lasting impact on the developmental trajectories and health outcomes of the offspring. Given the relatively low success rates of Assisted Reproductive Technologies (ART; ~25%), additives and adjuvants, such as glucocorticoids, are utilized to improve the success rate. Considering the dynamic developmental events that occur during this window, these exposures may alter blastocyst formation at a molecular level, and as such, affect not only the viability of the embryo and ability of the blastocyst to implant, but also the developmental trajectory of the first three cell lineages, ultimately influencing the physiology of the embryo. In this study we present a comprehensive single-cell transcriptome, methylome and small RNA atlas in the day 7 human embryo. We demonstrate that, despite no change in morphology and developmental features, preimplantation glucocorticoid exposure reprograms the molecular profile of the TE lineage and these changes are associated with an altered metabolic and inflammatory response. Our data also suggest that glucocorticoids can precociously mature the TE sub-lineages, supported by the presence of extravillous trophoblast markers in the polar sub-lineage and presence of X Chromosome dosage compensation. Further, we have elucidated that epigenetic regulation (DNA methylation and microRNAs (miRNAs)) likely underlie the transcriptional changes observed. This study suggests that exposures to exogenous compounds during preimplantation may unintentionally reprogram the human embryo, possibly leading to suboptimal development and longer-term health outcomes.

+view abstract Genome research, PMID: 35948369

Barneda D, Stephens L, Hawkins P Signalling

Li et鈥塧l present the results of a proximity-interaction screen in mammalian cells for the effector proteins of 25 members of the Arf family of small GTPases. This study has generated an important resource for those working in several areas of cell biology and provided an initial characterisation of two new cellular roles for some of the least well studied members of this family, the regulation of PLD1 by ARL11/14 in phagocytosis, and the regulation of PI4KB by ARL5A/5B in the Golgi.

+view abstract The EMBO journal, PMID: 35929178

Open Access
Richard AC Immunology

The advent of technologies that can characterize the phenotypes, functions and fates of individual cells has revealed extensive and often unexpected levels of diversity between cells that are nominally of the same subset. CD8 T cells, also known as cytotoxic T lymphocytes (CTLs), are no exception. Investigations of individual CD8 T cells both and have highlighted the heterogeneity of cellular responses at the levels of activation, differentiation and function. This review takes a broad perspective on the topic of heterogeneity, outlining different forms of variation that arise during a CD8 T cell response. Specific attention is paid to the impact of T cell receptor (TCR) stimulation strength on heterogeneity. In particular, this review endeavors to highlight connections between variation at different cellular stages, presenting known mechanisms and key open questions about how variation between cells can arise and propagate.

+view abstract Frontiers in immunology, PMID: 35911755

Open Access
Cook SJ, Lochhead PA Signalling

The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is frequently de-regulated in human cancer. Melanoma in particular exhibits a high incidence of activating BRAF and NRAS mutations and such cells are addicted to the activity of these mutant oncoproteins. As a result three different BRAF inhibitors (BRAFi) have now been approved for BRAFV600E/K- mutant melanoma and have transformed the treatment of this disease. Despite this, clinical responses are typically transient as tumour cells develop resistance. These resistance mechanisms frequently involve reinstatement of ERK1/2 signalling and BRAFi are now deployed in combination with one of three approved MEK1/2 inhibitors (MEKi) to provide more durable, but still transient, clinical responses. Furthermore, inhibitors to ERK1/2 (ERK1/2i) have also been developed to counteract ERK1/2 signalling. However, recent studies have suggested that BRAFi/MEKi and ERK1/2i resistance can arise through activation of a parallel signalling pathway leading to activation of ERK5, an unusual protein kinase that contains both a kinase domain and a transcriptional transactivation domain. Here we review the evidence supporting ERK5 as a mediator of BRAFi/MEKi and ERK1/2i resistance. We also review the challenges in targeting ERK5 signalling with small molecules, including paradoxical activation of the transcriptional transactivation domain, and discuss new therapeutic modalities that could be employed to target ERK5.

+view abstract Frontiers in cell and developmental biology, PMID: 35903549

Droubi A, Wallis C, Anderson KE, Rahman S, de Sa A, Rahman T, Stephens LR, Hawkins PT, Lowe M Signalling

Upon antigen binding, the B cell receptor (BCR) undergoes clustering to form a signalosome that propagates downstream signaling required for normal B cell development and physiology. BCR clustering is dependent on remodeling of the cortical actin network, but the mechanisms that regulate actin remodeling in this context remain poorly defined. In this study, we identify the inositol 5-phosphatase INPP5B as a key regulator of actin remodeling, BCR clustering, and downstream signaling in antigen-stimulated B cells. INPP5B acts via dephosphorylation of the inositol lipid PI(4,5)P2 that in turn is necessary for actin disassembly, BCR mobilization, and cell spreading on immobilized surface antigen. These effects can be explained by increased actin severing by cofilin and loss of actin linking to the plasma membrane by ezrin, both of which are sensitive to INPP5B-dependent PI(4,5)P2 hydrolysis. INPP5B is therefore a new player in BCR signaling and may represent an attractive target for treatment of B cell malignancies caused by aberrant BCR signaling.

+view abstract The Journal of cell biology, PMID: 35878408